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Abstract

Two spare drift chambers produced for the barrel muon spectrometer of the LHC CMS experiment
in I.N.F.N. Legnaro Laboratory (Padova, Italy) have been extensively tested using cosmic-ray events.
A fitting algorithm was developed to infer in optimal way the time of passage of the particle, from
which a timing resolution of2 ns has been obtained. Using cosmic ray data, the algorithm allows
to measure the track reconstruction precision of the chambers with the same accuracy as with high
energy test beam data.



1 Introduction
Two spare muon drift chambers of MB3 type are being used in theINFN Laboratory in Legnaro (Padova) to assess
the feasibility and the limits of the so called muon radiography. This technique uses the multiple scattering of
cosmic muons to infer the density of materials contained in closed volumes.

A key requirement of the project is an accurate reconstruction of the muon trajectories before and after crossing the
volume under analysis. To this purpose a new fitting procedure of muon tracks crossing a DT chamber has been
developed, with the aim of optimizing the time and space resolution in absence of external timing devices. This
procedure can be useful to improve the muon track reconstruction and the time of flight measurement in CMS, at
least in zones of the chambers where the residual magnetic field is negligible.

All data presented here refer to the chambers MB3-061 and MB3-054, which behaved typically.

2 CMS Detector DT Chambers
The CMS barrel muon detection system [1] consists of 4 concentric shells of wire drift chambers, called MB1
(from the innermost), MB2, MB3, and MB4. They are located on four concentric layers along the beam line inside
the five wheels of the iron yoke of the CMS barrel. MB3 chamberswere produced in INFN Legnaro National
Laboratory during the years 2001-2005.

Figure 1: MB chamber cross section.

2.1 Brief Detector Description

A CMS muon chamber [2] consists of 3 independent units, called ”Super Layers” (SL), attached to a structural
honeycomb support, as shown in Figure 1. Each SL is composed by 4 planes of parallel rectangular drift tubes,
called ”layers”. Each layer is staggered by half cell with respect to the contiguous ones. Two SLs, namedSLΦ1

andSLΦ2, have wires in the same direction. In CMS they measure the muon track position and direction in the
bending plane (ρ− φ plane in the CMS coordinate system). The third SL, namedSLΘ, has wires in perpendicular
direction and measures the track coordinate parallel to thebeam direction.

The cross section of a drift tube is shown schematically in Figure 2. The pitch in a layer is42 mm. The distance
among the wire planes of two consecutive layers is13 mm. The electric field in the drift cell is shaped by three
electrodes: a wire, kept at positive voltage, where the electron multiplication occurs, two cathodes at negative
voltage, and two central strip electrodes with voltage intermediate between wire and ground, whose purpose is to
improve the field uniformity along the drift path. MB3 chamber wire length is237.9 cm and302.1 cm for Φ and
Θ SLs, respectively. EachSLΦ contains286 channels, while theSLΘ contains227 channels, for a total of799
channels per chamber. Any charged particle going through a cell volume will generate a signal in its anodic wire.
The measurement of the arrival time of the discriminated signal performed by the read-out electronics allows the
later reconstruction of the particle track.

The wire signal is processed by the front-end electronics (FE) [4], composed by a fast charge preamplifier (33 ns
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Figure 2: Schematic view of a drift tube. The drift lines (continuous lines) and the isochronous surfaces (dotted
lines), computed with the CERN program GARFIELD [3], are also shown.

integration time) followed by a shaper (shaping time15 ns) and a discriminator. Signals from the front-end
electronics are fed into the so-called MiniCrate, an aluminum structure attached to the honeycomb of the chambers,
hosting the DT trigger electronics (Trigger Boards - TRB) and the Read-Out Boards (ROBs), together with the
necessary services.

The trigger electronics located in the MiniCrate delivers atrigger signal at a fixed time after the passage of a
particle. The details of the trigger electronics can be found in [5]. The core of the system is a custom VLSI, called
”Bunch and Track Identifier” (BTI). Each BTI reads nine adjacent wire signals in a single SL, and reconstructs
the alignment of the signals from the four layers of the SL. The alignment is checked by a sophisticated algorithm
called generalized mean-timer method, interpreted roughly as a line fit through the muon chamber planes using
the input drift times. An additional device named ”Track Correlator” (TRACO) looks for alignment of the track
segments of the twoSLΦ. The number of aligned hits (3 or 4) in the SL segments and the correlation between the
segments of the twoΦ SL are used to define a quality flag of the trigger. A third device in the chamber trigger
chain, the ”Trigger Server” (TS), selects the two best quality tracks in the whole chamber.

The system has been designed for use in LHC, where particles are bunched at the40 MHz accelerator frequency.
The trigger algorithm works on a40 MHz cycle, and the trigger signal is therefore clocked at the same frequency.

The Read-Out Boards (ROBs) [6] are built around a 32-channelhigh performance TDC, developed by CERN/EP
Microelectronics group.

Neglecting the technicalities of the circuits, the TDC works effectively in common-stop mode, the stop signal being
given by the trigger signal. All the wire signals received backwards in time from the stop in a fixed time window,
in our case3.2 µsec, are read from the TDC buffers. Each TDC output value is the time from the beginning of the
time window to the arrival time of the wire signal, measured in TDC units, equal to25/32 ns.

In standard chamber operating conditions the electrons drift velocity in the cell has approximately a constant value
along the full drift path. Therefore, neglecting the small wire-to-wire signal propagation corrections (of the order
of the ns), the difference between the TDC times of different wires isdirectly proportional to the difference of
distance of the muon track from the wires. For this reason theTDC raw time histogram, shown in Figure 3, has a
box-like shape, commonly called ”time-box”. The box width,representing the maximum drift time in the cell, is
about400 ns. The tail on the right hand side is due to secondary electronsextracted from the cell walls from UV
photons generated by the initial avalanche [7].

To measure the differences of the signal propagation times from FE to ROBs, due to different cable lengths inside
the MiniCrate, a common test pulse signal can be injected into each FE amplifier channel. The TDC measurements
of the test pulse arriving time is used to correct the TDC output of each channel before data analysis. After this
correction, the TDC value for each channel measures exactlythe time interval from the TDC time origin to the
time at which the signal reaches the FE, within a systematic error that can be estimated to be of the order of0.5ns.

2.2 Experimental Setup in Legnaro Laboratory

In the present study, two MB3 chambers were placed horizontally on the cosmic stand in Legnaro. The cosmic ray
rate through a chamber is about800 Hz. Cosmic ray data were collected with the chambers operatingin standard
conditions as far as gas-mixture, HV settings and discriminator thresholds are concerned. They were filled with an
Ar(85%) − CO2(15%) gas mixture, kept at atmospheric pressure (typicallyp = 1020 mbar), with a gas flow of
0.2 l/min, roughly corresponding to one full gas exchange every 3 days. The standard high voltage values of the
cell electrodes were:Vwire = 3700 V , Vstrip = 1800 V , Vcathode = −1200 V . At these voltages, and with the
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Figure 3: Example of cosmic ray raw time histogram.

gas mixture quoted above, the drift velocity has the approximately constant value ofvD = 55 µm/ns along the
full drift path [2].

The two chambers have been aligned in the stand with a precision of about1 mm, with the wires parallel within
0.5mrad. In this way the angles measured in theΦ and theΘ views of the two chambers can be directly compared
without off line alignment corrections.

The cosmic stand setup also includes a system of four plasticscintillators, located below the bottom chamber, at a
vertical distance of about1 m from it. The time resolution of this system is worse than the intrinsic resolution of
the chambers, as obtained with our off line analysis. In addition, the scintillator setup limits the space and angle
acceptance of cosmic ray muons. For both reasons we decided not to use the scintillator trigger to collect the
data presented in this note, but to use only the trigger issued by the chamber trigger electronics (autotrigger in the
following).

3 Cosmic Rays Detection
In this section we will explain in detail the source of the uncertainty on the muon exact crossing time determination,
when cosmic rays are detected with CMS muon chambers. The algorithm discussed in this note allows to infer it
with the best possible precision, with a final resolution of the order of2 ns.

3.1 AutoTrigger Timing with Cosmic Rays

As pointed out in Section 2.1, the TDCs allow the measurement, for each cell, of the time difference between
a time origin related to the trigger signal and the time of thesignal from the cell. A more detailed treatment is
necessary at this point, to understand the relation betweenthe TDC time origin and the time of passage of the
particle through the chamber.

The Level 1 trigger signal is not simply issued after a fixed delay from the particle crossing, but after a fixed number
of clock cycles following the clock in which the passage of the particle has happened. The TDC time origin in turn
is located a fixed number of clock cycles before the Level 1 trigger signal. Therefore there is a fixed number of
clock cycles between the TDC time origin and the clock edge immediately preceding the particle passage. Let’s
call ttrig the time of this clock edge,tµ the time of passage of the muon andt0 the difference between them:
t0 = tµ − ttrig, so thattµ = ttrig + t0. From what we just said, the distance in time ofttrig from the TDC time
origin is the same for all the tracks, and can be determined from the time box distribution, as we shall see in the
following. On the contrary,t0 is different from track to track, its value spanning the range0 ÷ 25 ns.
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In CMS, during LHC operation, particles are produced in collisions bunched in time at the same frequency of the
clock used in the trigger circuitry. Therefore there is a fixed phase relation between the time at which the muon
leaves the interaction point and the clock signal. As a consequence the value oft0 is calculable using the time of
flight of the muon from the interaction point to the chamber and the timetµ at which the muon crosses a chamber
is exactly known for every muon.

This is not true for cosmic rays, that arrive randomly distributed in time. For themt0 is randomly distributed in the
range0 ÷ 25 ns and is not directly calculable. It is one of the purpose of this note to discuss a method to infer the
value oft0 in an optimal way from the measurement of the twelve chamber layers.

From what we just said,ttrig can be computed from the known behaviour of the trigger electronics. Alternatively,
it can be measured from the time box histogram. This second method allows to automatically take into account
the effects of the transit time of signals through cabling and trigger circuitry. Consider muons passing through
the wire of a cell. For them the charge amplification occurs without appreciable delay with respect to the particle
passage and the time at which their signal arrives to the FE ispracticallytµ. Since the signal transit time from FE
to ROB is corrected using the test pulse information, as saidpreviously, for these muons the TDC value is equal
to tµ = ttrig + t0. All the other muons, hitting the chamber far from the wires will have TDC values bigger than
this, because their signal will be delayed by the drift time of ionization electrons. Sincet0 is randomly distributed
in the range0÷ 25 ns, in the time box histogramttrig is the smallest of all the measured times, the point at which
the time box histogram starts.

The purpose of the signal time measurement is to measure the track crossing point using the drift time of ionization
electrons,tdrift,i = tTDC,i − tµ for cell i. Using the trigger information alone, the best approximation of tµ is
tµ = ttrig + 12.5 ns. This estimate of drift time suffers from thet0 intrinsic uncertainty. The r.m.s. of thet0
distribution is25 ns/

√
12 = 7.2 ns, corresponding to a position error of∼ 400 µm on each layer measurement,

completely correlated among the layers. This value has to becompared to the intrinsic resolution of the drift cell,
known from test beam measurements to be of the order of200 µm.

When fitting a straight line track through the measured hits, the effect of the timing error on the track parameters
partially cancels out, as it is evident if the trajectory is such that the wires of consecutive layers lay on opposite
sides of the track (see the event display plot in Figure 5 for clarification). However, independently from the size
the effect on the track parameters, the residuals from the fitted line will be anyway affected. This has two negative
effects:

1. A muon track crossing the chamber layers can produce aδ ray with enough energy to generate ionization
electrons far from the muon trajectory. If those electrons are closer to the wire than the muon track, they
will produce a signal masking the muon track signal. The measured drift time will be shorter than it should
be. The probability for this to happen is∼ 5% per layer [7]. A fraction of these wrong-measured hits can
be eliminated with a cut on the tails of the distribution of the residuals. The broader the distribution, the less
efficient will be the cleaning cut.

2. A considerable fraction of the cosmic muons has so low a momentum that the trajectory through the chamber
is affected by multiple scattering in a sizeable way. As a consequence, the chamber space precision appears
to be worse with cosmic rays than with high energy particles.As we will show in the following chapters, if
the residuals of the track fit are not much larger compared to the effect of multiple scattering, it is possible to
use the average residual value to select a sample of cosmic muons enriched in the high energy component,
recovering the precision obtainable with high energy test beams. The operation is not effective if the residual
distribution is too broad.

4 DT Chamber: Local Track Reconstruction
As pointed out in the previous section, it is imperative to determine the exact particle drift times in cells, not affected
by thet0 uncertainty, in order to reconstruct muon tracks obtainingthe best track parameters. In this section we
will explain the procedure to estimate track parameters with a simple line fit, and the improved algorithm witht0
estimate.

4.1 Data Sample

The results of this note refer to the analysis of a sample of about a million cosmic ray tracks collected in autotrigger
mode. Only events where a single track could be identified in both views of the two chambers were considered for
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the analysis.

To measure the particle trajectory, the measured points arefitted with a straight line in both views. In all the fits
that will be discussed in the following paragraphs, to reduce the bias fromδ rays, hits with a too large residual
are rejected. This is done iterating the fit, discarding at each loop the point whose residual from the fitted line is
greater than 3σ. The value ofσ, for reasons that will be discussed in Section 5.2.2, is chosen to be function of the
track angleα in the plane perpendicular to the wire asσ =

(

250 + 200 · α2
)

µm . The iteration is stopped when
all the remaining points lay inside the cut. Events for whichless than 6 points are left in theΦ SLs, or less than 3
in theΘ SL, are discarded.

Figure 4 shows the distribution in angle and position of the selected events.
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Figure 4: Slope and intercept distributions inΦ andΘ views.

Events are retained for the analysis if|tg(Φ)| < 0.8 and|tg(Θ)| < 0.8.

4.2 Simple Straight Line Fit

The first step in any track reconstruction is the so-called pattern-recognition, where the hits belonging to the same
muon track are identified and the left-right ambiguity inherent to any drift chamber is solved (see the event display
plot in Figure 5 for clarification).

Thanks to the low flux of cosmic rays, the average time separation between consecutive events is three orders of
magnitude larger than the maximum drift time of ionization electrons in a cell. Therefore for most of the events
only one track is present, making the pattern recognition a non critical task. We used the pattern-recognition
software developed for the official CMS OO-reconstruction program ORCA [8]. The algorithm was adapted to
cosmic muon reconstruction simply increasing the measurement error to∼ 450 µm, to take into account both the
t0 uncertainty and the possible effects of multiple scattering for low momentum muons. A linear drift space-time
relationship inside the cell was assumed, with a uniform drift velocity vD = 55.0 µm/ns. The algorithm loops
over all the possible hit combinations in each SL independently, and in the 2SLΦ combined, selecting the best
straight line fit, i.e. the one with the biggest number of points and the lowestχ2.

A simple straight line fit is therefore used to computed the muon track parameters. The track distance from the
wire in cell i is deduced from the drift time (tdrift,i), assuming linear space-time relationship and usingttrig only
to estimatetµ, neglecting thet0 variation. This simple straight line fit gives broad residuals distributions, as could
be seen in Figure 6, where the best estimate of the standard deviation of residuals,̂σ =

√

∑

i res2
i /NDF , is

plotted.

A very useful quantity to study the drift time measurement precision is the so called Mean Time (MT).

To understand the properties of this quantity, consider first Figure 7. It shows a track passing through a SL,
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Figure 5: Example of a single event display. The left-right ambiguity of the hits is shown with a cross. Black dots
show the position of the wires.
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and contained in a semi-column, the gray region in the figure,composed by four half cells located in the samex
coordinate interval. Letdi be the distances of the track from the wires in the four planes, measured in each wire
plane. The following geometrical relations hold:

µ
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d   1d   1

d   3d   3
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D

Figure 7: Example of a track completely contained in a semicolumn (the gray area).

D =
d1 + d3

2
+ d2 (1)

D =
d2 + d4

2
+ d3 (2)

where D is the width of the semicolumn (half the wire pitch). The relations hold for any angle or position of the
track, as long as it is contained in the semi-column. If the space-time relation is linear, similar equations hold for
the drift times:

MT123 =
tdrift1 + tdrift3

2
+ tdrift2 . (3)

MT234 =
tdrift2 + tdrift4

2
+ tdrift3 . (4)

where the subscripts 123, and 234, indicate the three layersused in the combination. Since the MT value is
constant, equal to the time needed to drift across the full semi-column, its experimental width is directly related to
the precision of the drift time measurements.

Figure 8 shows the MT distribution when the drift times are computed neglecting thet0 correction.

The distribution is about50 ns wide, as expected from the25 ns uncertainty ont0.

The tail visible in the figure on the left side of the peak is dueto δ-ray production, as described in section 3.1.
To avoid biases, in the following analysis we will always measure the MT average value and resolution fitting a
Gaussian function to the peak region of the MT distribution.

4.3 Single Chamber Fit with t0 estimate

As discussed in previous chapters, if we avoid usingt0 when computing the drift times we introduce an unnecessary
large error. Since any error ontdrift,i increases the residuals of the track fit,t0 can be left as a free parameter in
the track equation and its value estimated minimizing theχ2 of the fit.
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Figure 8: Mean Time distribution whenttrig is used as time of passage of the particle on the wire.

This procedure has already been used to analyze cosmic data [9], [10]. The present note carries forward the
previous works, extending it to the simultaneous analysis of all the12 layers of one or several chambers to obtain
the best possible determination oft0, and therefore the best determination oftµ.

The trajectory of the particle is described by 2 independentstraight lines inΦ andΘ views. The points associated
to a track are identified by the coordinatesxi, yi, in each layeri, where thex coordinate is in the wire plane and
orthogonal to the wires, andy is orthogonal to the wire planes. Theyi coordinate is already assumed known from
the nominal geometry of the chamber. Thexi coordinate depends on the drift timetdrift,i and on the drift velocity
vD. The drift velocity could be left as a free parameter in the track equation and its value and uncertainty estimated
minimizing theχ2 of the fit too (see comment below). Let’s defineti = tTDC,i − ttrig, wheretTDC,i is the raw
time read from the TDC channel of wirei. Beingtµ = ttrig + t0, we havetdrift,i = tTDC,i − tµ = ti − t0.

We will assume a linear dependence between drift time and muon coordinate in the wire plane, given by the
expression:

xi = fi + ǫivDtdrift,i = fi + ǫivD(ti − t0) = fi + ǫivDti − ǫix0 (5)

where:

- fi is the nominal x coordinate of the wire where the signal was collected. The chamber construction procedure
guarantees that the actual wire position differs from the nominal one by at most100 µm;
- ǫi value is +1 or -1, depending on which side with respect to the wire the track is;ǫi is assumed to be known from
the preliminary pattern recognition algorithm;
- x0 = vDt0. The use of the variablex0 in place oft0 simplifies the fit equations.

In the following equations we will use different indexes forthe layers of theΦ andΘ views:

• i index is used for the 8Φ layers. The straight line has equationxi = myi + a. The angular coefficient m is
0 for tracks perpendicular to the chamber.

• j index is used for the 4Θ layers. The line is:xj = nyj + b.

Theχ2 function to be minimized to find the best lines interpolatingthe points is:

χ2 =
∑

i

wi[xi − (myi + a)]2 +
∑

j

wj [xj − (nyj + b)]2 (6)

wherewi = 1/σ2
i . The errorσi should include both the measurement error and the error coming from multiple

scattering, if known. In the analysis of this note, since we do not have information on the muon momentum, the
multiple scattering contribution cannot be considered on an event by event basis.

Makingxi andxj dependence fromvD andx0 explicit, we have:

χ2 =
∑

i

wi[fi + ǫivDti − ǫix0 − myi − a)]2 +
∑

j

wj [fj + ǫjvDtj − ǫjx0 − nyj − b)]2 (7)
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The variables to be determined by minimizing theχ2 function are the slopesm,n, the interceptsa, b in theΦ and
Θ views, the variablex0 connected tot0 and the drift velocityvD.
The system to be solved isM−→v =

−→
C , where the matrix M is:

M =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

Si
yy Si

y 0 0 Si
ǫy −Si

ǫty

Si
y wi 0 0 Si

ǫ −Si
ǫt

0 0 Sj
yy Sj

y Sj
ǫy −Sj

ǫty

0 0 Sj
y wj Sj

ǫ −Sj
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ǫy Si
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ǫ Si+j
ǫǫ −Si+j
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Si
ǫyt Si

ǫt Sj
ǫyt Sj

ǫt Si+j
ǫǫt −Si+j

ǫǫtt

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

.

and

−→v = (m, a, n, b, x0, vD)

−→
C = (Si

fy, Si
f , Sj

fy, Sj
f , Si+j

fǫ , Si+j
fǫt )

The symbolsSi
pqr indicate the sum

∑

i

piqiri.

In this system the drift velocity is left as a fit parameter. However, beingvD the same for all the particles, more
precise results can be obtained fixing it to a value determined independently. The modifications of the above
equations to use a fixedvD are straightforward. Except when explicitly quoted, the results shown in the following
have been obtained using a fixed value ofvD = 54.7 µm/ns.

4.4 Two Chambers Global Fit

The method can be extended to any number of layers. A global fitof all the 24 layers (the 2 chambers in sequence)
is possible in our setup. In the present note we focused mainly to the single chamber fit, because we want to
measure the precision obtained through the comparison of the results of the two chambers. Only as a conclusion
of the main goal, in Section 6, we will present some result of aglobal fit procedure.

As a reference, we give here the equations used in the global fit. An additional couple of indexes for the second
chamberΦ andΘ views is introduced:

• k index is used for the 8 planes of chamber 2 SLΦ. The straight line has equationxk = pyk + c.

• l index is used for the 4 planes of chamber 2 SLΘ. The line is:xl = qyl + d.

Theχ2 function, withvD andx0 explicit dependence, this time is:

χ2 =
∑

i

wi[fi + ǫivDti − ǫiz0 − myi − a)]2 +
∑

j

wj [fj + ǫjvDtj − ǫjz0 − nyj − b)]2+

∑

k

wk[fk + ǫkvDtk − ǫkz0 − pyk − c)]2 +
∑

l

wl[fl + ǫlvDtl − ǫlz0 − qyl − d)]2
(8)

We have to find solutions forM−→v =
−→
C , were:

M =
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−→v = (m, a, n, b, p, c, q, d, x0, vD)

−→
C = (Si
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f , Si+j+k+l

fǫ , Si+j+k+l
fǫt )

4.5 Drift Time Corrections

The distribution of the standard deviation of residualsσ̂ after the single chamber fit witht0 estimate is shown in
Figure 9. The Mean Time is shown in Figure 10 as well, computedusing thet0 fitted value.
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Figure 9: Standard deviation of residualsσ̂ from straight line fit witht0 estimate.
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Figure 10: Mean Time for chamber 1 SuperLayers, computed using thet0 value from the chamber fit.

These figures should be compared with Figure 6 and Figure 8 where thet0 was not considered in computing
tdrift. The fit of thet0 parameter has improved the hit resolution. However, the long tail on the high side of̂σ
shows that systematic effects are still present.

We can identify two of them:

1. Signal-propagation along the wire: the muon generates anavalanche around the wire in the vicinity of the
intersection between the track and the chamber layer. The electric signal propagates then along the wire to
the front end discriminator. Since the propagation time depends on the impact point, a correction must be
applied event by event.

2. Track angle correction: a linear relationship between the drift time and the coordinate of the track in the wire
plane is assumed when deriving the equations used in the fit. This assumption is no longer correct for tracks
at large angle of incidence, due to the cell field shape (see the drift and isochronous lines in Figure 2). For
large angle tracks, the first ionization electrons arrivingto the wire make a shorter path than the electrons
released near the wire plane. The delay of the latter dependson the angle of the track but also on the muon
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track distance from the wire. We will assume that a large fraction of this effect can be accounted for by a
simple shift of the time measurement.

Taking into account those effects, the correct expression for the drift time is:

tdrift,i = ti − t0 − tp,i + tα,i (9)

where:
- tp,i is the signal propagation time along the wire from the track crossing point to the FE. It is different in the two
Φ andΘ views, but is essentially the same for all the layers in a view,
- tα,i is the phenomenological correction used to take into account the non linearity of the space-time relation for
inclined tracks. Again, it is different in the twoΦ andΘ views because it depends on the track angle in the plane
perpendicular to the wires, but it is the same for all the layers in a view.

Since bothtp,i andtα,i are different in theΦ andΘ views, in order to make a simultaneous fit over all the twelve
layers we have to correct the measured drift times for those effects. It is useful to remark here that if we limit the
fit to one view only, thet0 parameter in the fit will automatically absorb thetp andtα corrections. In this case, the
fitted value of thet0 parameter, that we shall callt0Φ or t0Θ depending on the view considered, will be related to
thet0 correction byt0Φ = t0 + tpΦ − tαΦ in theΦ view, or t0Θ = t0 + tpΘ − tαΘ in theΘ view. In conclusion,
the bestt0 estimate, using the fit over all twelve layers, requires bothtp,i andtα,i corrections. In the following
subsections we will explain how we evaluated these two corrections.

4.5.1 Signal propagation along the wire

The propagation time along the wire can be measured studyingthe variation of the MT mean value, as a function
of the track impact point position. The Mean Time is a good tool because its width is small, and a variation∆t of
tdrift,i produces a MT variation twice as big:∆(MT ) = 2 · ∆t.

We proceed as follows. We fit a straight line through the eightpoints of theΦ view only, finding the bestt0Φ
parameter (we choose theΦ view due to the larger number of layers). This fittedt0Φ, as discussed before, includes
the propagation time along theΦ wires. We then use it to compute theΘ drift times forMTΘ computation.
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Figure 11:MTΘ mean value versus distance from Front EndΘ , usingt0Φ ast0 value.

Figure 11 shows theMTΘ mean value in small intervals of distance from theΘ Front End plotted against the
distance. Figure 12 shows the same quantity plotted againstthe distance fromΦ Front End. SinceMTΘ depends
on both distances, a more precise measurement of the propagation velocity can be obtained in a plot where the mean
MTΘ is plotted against the difference of the distances from the two front ends. Figure 13 gives this last correlation.
Fitting the latter plot with a straight line gives a signal propagation velocity ofvprop = (24.0 ± 0.1) cm/ns,
where the error is statistical only. The value, used in the following analysis, is consistent with the less precise
determination reported in [11] and with test bench measurements.
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Figure 12:MTΘ mean value versus distance from Front EndΦ , usingt0Φ ast0 value.
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Figure 13: Mean TimeΘ versus sum of distances from Front EndΦ and Front EndΘ, usingt0Φ ast0 value.
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4.5.2 Track Angle Correction

The analysis presented in this section has been done correcting the drift times for the propagation time along the
wires, as explained in the previous chapter.

To investigate the effect of the track angle, we first used theMTΘ variable.

As in the previous paragraph, we fit a straight line through the eight points of theΦ view only and use the fitted
t0Φ to compute theΘ drift times forMTΘ computation. To limit the analysis to the dependence on theΘ angle,
we selected tracks with small angle inΦ view (|Φ| < 0.1). In this way, we are guaranteed that thet0Φ resulting
from the fit is not biased by largeΦ angle contributions.

The meanMTΘ value as a function ofΘ is shown in Figure 14. The Mean Time changes by about8ns for angles
up to25o. This result is in agreement with the analysis performed previously, see for example [9].
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Figure 14: Mean TimeΘ versusΘ slope when vertical tracks are selected inΦ view and usingt0Φ ast0 value.

Unfortunately, the use the Mean Time restricts the analysisto tracks contained in a semi-column. This constraint
biases the distribution of the impact point and limits the track slope to the range [-0.5, +0.5]. To extend the analysis
to the full angular range of our data sample, and with an unbiasedx distribution, we devised a different method.
We fit the track in theΘ andΦ view with independent values oft0, obtaining the best estimates oft0Φ andt0Θ.
We then study the dependence on the track angle of the difference∆t0 = t0Φ − t0Θ. Since the propagation time
effect is corrected for, we have∆t0 = (t0 − tαΦ) − (t0 − tαΘ) = tαΘ − tαΦ.

We first select tracks with a smallΦ slope, for whichtαΦ is negligible, so that∆t0 ≈ tαΘ. Figure 15 shows
how ∆t0 depends on theΘ slope. The shape is almost perfectly parabolic in the full angular range. The same
result is obtained choosing tracks with smallΘ and plotting∆t0 against theΦ slope. We expect therefore that
for all the events, without any angular cut, the difference∆t0 will depend on the track angles as∆t0 = −K ·
[

(tgΦ)
2 − (tgΘ)

2
]

. This is confirmed from Figure 16. A linear fit to the data of this figure gives forK the value

K = (19.79 ± 0.04) ns. This value will be used in the following analysis.

5 Analysis of Chamber Fit Results
The full data sample has been reanalyzed applying all corrections discussed so far. All the tracks were fitted in
each of the chambers separately, following the method described in Section 4.1. Before the fit, the drift times
were corrected for the effects of signal propagation along the wire and for non linearity at large angle, using the
preliminary values of impact coordinates and track angles given by the pattern recognition track fit. In this way the
t0 value given by the fit represents the track crossing time for any impact point or angle of incidence of the track.

5.1 t0 resolution

The main purpose of the fit procedure discussed in this note isto minimize the track position errors by obtaining
a precise estimate oft0. To measure the precision obtained, thet0 estimates of the two chambers are compared:
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Figure 15:(t0Θ − t0Φ) versus track slope before angle correction.
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Figure 17 shows the histogram of the difference of the two values. The r.m.s. of the distribution is equal to3.4ns,
from which at0 precision of2.4 ns for the single chamber fit is deduced. Neglecting the tails, the histogram can
be fitted by a gaussian function with2.5 ns width, corresponding to a chamber time resolution of1.8 ns.
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Figure 17:t0 difference between chamber 1 and chamber 2, all correctionsapplied.

The average value of thet0 difference histogram measures the muon time of flight (t.o.f.) from the upper to the
lower chamber. The distanceh between the middle planes of the two chambers in our stand is∼ 50 cm, therefore
the t.o.f. for vertical tracks is∼ 1.6 ns, compatible, within the systematic errors, with the measured1.1 ns.

However, the t.o.f. is expected to vary with the track angle as h/cos (α), whereα is the angle of the track with
respect to the vertical. The t.o.f. variation with the trackangle is not affected by the systematic uncertainties on the
time measurement. Figure 18 gives the average value of thet0 difference in small intervals of the angleα plotted
against1/cos (α). We observe the expected linear dependence, and the size of the variation is what expected from
the relative distance of the two chambers.
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Figure 18:t0 difference for chamber 1 and chamber 2 versus1/cos (α).

The good precision of thet0 determination implies a narrow distribution of the MeanTime variable, as observed in
Figure 19.
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Figure 19: Mean TimeΦ, all corrections applied.

5.2 Residuals

The distribution of the standard deviation of residuals of the track fit,σ̂, is shown in Figure 20. The mean value is
now∼ 300 µm, lower than the value of530 µm observed in Figure 9, but still larger than the∼ 200 µm observed
with test beam data.
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Figure 20: Standard deviation of residualsσ̂ from straight line fit with all corrections applied.

We can identify two possible sources for this discrepancy:

• The cosmic muons momentum spectrum has a large component of low momentum particles, down to few
hundred MeV: in this range the multiple scattering in the chamber material can have a sizeable effect.

• The angular distribution of cosmic ray data is much broader than what is usually considered when taking
data in test beams. As discussed in Section 4.5.2, the linearity between drift time and distance of the track
crossing point from the closest wire fails for large angle tracks. Therefore we expect larger residuals for
large angle tracks.

These hypothesis will be analyzed in the following sections.
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5.2.1 Residuals and Muon Momentum

While for high momentum tracks the residuals are essentiallydue to the measurement errors, residuals for low
momentum tracks are expected to be larger, due to the increased multiple scattering of the particle through the
chamber material. Therefore, a correlation between the fit residuals in the two chambers is expected, larger for the
low momentum component of the spectrum. This correlation isindeed observed in Figure 21 were the distributions
of residuals in one chamber are shown for different intervals of theχ2 value in the other chamber.
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Figure 21: Standard deviation of residuals to the track fit inchamber 1 for differentχ2 ranges of the fit in chamber
2.

Figure 22 shows the standard deviation of residuals distribution for tracks with smallΦ andΘ angles (|Φ| < 0.2,
|Θ| < 0.2) and small residuals in chamber 2 ( chamber 2χ2 < 15). The mean value is about230 µm, a value not
far from test beam data [11].
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Figure 22: Standard deviation of residuals of chamber 1 fit for smallΦ andΘ angles and lowχ2 in chamber 2.

5.2.2 Residuals versus Angle

Figure 23 shows the distribution of residuals in theΦ view for differentΦ angle slices. A clear correlation of the
width of the distribution with the angle is observed.

To measure the correlation, the data were divided in smallΦ slices and the standard deviation of residuals in the
Φ view was computed in eachΦ bin. The mean value of̂σ is plotted in Figure 24 versus the central value of the
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Figure 23: Standard deviation of residuals to the track fit inchamber 1, for differentΦ ranges.

Φ interval. An approximate quadratic correlation is displayed. The observedΦ dependence of residuals can be
due both to the multiple scattering, since at large angles the particle traverses a bigger thickness of material, and
to the non linearity effects of the space-drift time relation. A Monte Carlo simulation, in which the momentum
spectrum of the cosmic muons and the materials of the chamberstructure have been taken into account, and where
the space-drift time relation has been assumed to be linear at all angles, is also shown in Figure 24 with dotted
lines. The contribution of the multiple scattering to the increase of residuals appears to be small. The effect of
non linearity could be corrected in principle by measuring the exact space - drift time relation as a function of the
angle. This further step is outside the scope of this note andwill be the subject of a forthcoming work.
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Figure 24: Mean value of the standard deviation of residualsin Φ view, versusΦ angle, compared with MonteCarlo
simulation (dotted lines).

5.3 Track Slope Measurement Precision

Being the two chambers well aligned, a comparison of the slopes measured in theΦ andΘ views allows to measure
the precision with which the slopes are measured. TheΦ slope difference measured in the two chambers is shown
in Figure 25. The r.m.s. value of the histogram, in the range−40 mrad,+40 mrad is 9 mrad, corresponding to
a Φ slope precision of about6 mrad, much larger than themrad resolution measured in high energy test beam
data [11]. Again this is due to the fact that the cosmic muon momentum spectrum extends to values as low as few
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hundred MeV/c. For such muons the multiple scattering can modify the direction of the particle by an angle bigger
than measurement resolution. This result is well reproduced by the Monte Carlo simulation quoted in the previous
paragraph. The distribution predicted by the simulation isshown as a gray area in Figure 25.
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Figure 25:Φ Slope difference between chamber 1 and chamber 2, compared with MonteCarlo simulation.

We can recover theΦ slope precision using again the fitχ2 in one chamber as a filter to cut the low momentum
component of the cosmic ray spectrum. The correlation is clear from Figure 26, were theΦ slope difference
histograms are shown for different intervals of chamber 2χ2.

The resolution of theΘ slope, shown in in Figure 27, is too big for the effect of multiple scattering to be important.

The fitted slope in theΦ view is much more precise than the one in theΘ view mostly because of the large
separation between the twoΦ SLs. This large separation has also the positive effect thatthe slope measurement is
less affected by systematic errors deriving from the assumption that the space-drift time relationship is linear. It is
therefore interesting to compare the measurement of theΦ angle obtained with one singleΦ SL, calledφ1 or φ2

in the following, and the one obtained with both SLs (φ12). To look for systematics effects, data were divided in
bins ofφ12, and the∆φ = φ12 - φ1 distribution of each sample was fitted with a gaussian function. Figure 28
shows the mean value and the width of the gaussian function plotted versus the central value of theφ12 interval for
chamber 1. No systematic effect is visible, apart from a slight increase of the width for the larger angles. The small
shift from zero of the mean value is compatible with the construction alignement precision of the layers inside a
SuperLayer, better than100 µm.

This result guarantees that the angle measurement in theΘ view, obtained with one superlayer only, is not affected
by significant systematic biases.

The same analysis was repeated in chamber 2. The absence of bias could be observed there only after having
increased the distance between the twoΦ SL by1.5mm with respect to the nominal value. We verified a posteriori
that the honeycomb panel of this chamber had been built outside tolerance, and the thickness was1.5 mm larger
than the design value. This shows that the measurement of cosmic ray tracks can be a powerful tool to spot and
correct construction anomalies of the chambers.

5.4 Fit of the drift velocity

As already said, all the results presented until now have been obtained fixing the drift velocity value tovD =
54.7 µm/ns. On the same data sample, a fit with the drift velocity left as free parameter was also performed.
Figure 29 shows the value of the velocity given by the fit in each of the two chambers. The average value in the
two chambers are very close and consistent with the value we used in the fits withvD kept fixed. The r.m.s. of the
distribution is∼ 4%. This is the precision with which a single track can measure the effective drift velocity, if we
assume that it is the same in all the layers.
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Figure 26:Φ Slope difference for different chamber 2χ2 slices.
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Figure 27:Θ Slope difference between chamber 1 and chamber 2, compared with MonteCarlo simulation.
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Figure 28: Difference∆Φ = φ12 - φ1 plotted against the slope (see text for the meaning of symbols). Top: Mean
value of∆Φ versusΦ. Bottom: Sigma of∆Φ versusΦ.
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6 Global Fit Results
A simultaneous fit to both chambers is expected to reduce the error on t0 by a factor

√
2, from 2.4 ns to about

1.7 ns.

We expect to observe the presence of such a small effect (from130 µm to 90 µm in space) only in events with the
best resolution. Figure 30 shows theΦ slope difference histograms for different intervals of chamber 2χ2. This
figure has to be compared with 26, where the same quantity was plotted, but compute fitting the two chambers
independently. The improvement is present, more importantfor low χ2. We cannot say if the global fit improves
the precision of the angle measurements, or if the decrease of the t0 error contribution on the residuals improves
the momentum selection operated by theχ2 cut.
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Figure 30: Slope difference for different chamber 2χ2 slices.

7 Conclusions
Two MB3 chambers assembled in the INFN production center at Legnaro have been extensively studied using the
cosmic ray test facility which was set up in Legnaro to test the chamber behavior. The analysis was used to develop
and check a fitting procedure to find the best timing precisionof muon crossing the two chambers, in absence of
external timing devices.

A timing precision from a single chamber of2.4 ns has been observed. Selecting tracks with lowχ2 in a chamber
allows to select a sample of muons of momentum large enough that the resolution of the other chamber can be
measured with the same precision as observed in high energy test beams, with an uniform illumination of the
chamber and a large angular spread of the particles crossingthe chamber.
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