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Abstract

Two spare drift chambers produced for the barrel muon speetter of the LHC CMS experiment
in I.N.F.N. Legnaro Laboratory (Padova, Italy) have beeteesively tested using cosmic-ray events.
A fitting algorithm was developed to infer in optimal way thmé of passage of the particle, from
which a timing resolution of2 ns has been obtained. Using cosmic ray data, the algorithrwvallo
to measure the track reconstruction precision of the chesnbith the same accuracy as with high

energy test beam data.



1 Introduction

Two spare muon drift chambers of MB3 type are being used itNF&l Laboratory in Legnaro (Padova) to assess
the feasibility and the limits of the so called muon radiqma This technique uses the multiple scattering of
cosmic muons to infer the density of materials containedased volumes.

A key requirement of the project is an accurate reconstoaf the muon trajectories before and after crossing the
volume under analysis. To this purpose a new fitting proeadfimuon tracks crossing a DT chamber has been
developed, with the aim of optimizing the time and spacelwism in absence of external timing devices. This
procedure can be useful to improve the muon track recorigiruand the time of flight measurement in CMS, at
least in zones of the chambers where the residual magnétidsieegligible.

All data presented here refer to the chambers MB3-061 and-BB which behaved typically.

2 CMSDetector DT Chambers

The CMS barrel muon detection system [1] consists of 4 caniceshells of wire drift chambers, called MB1
(from the innermost), MB2, MB3, and MB4. They are located ourfconcentric layers along the beam line inside
the five wheels of the iron yoke of the CMS barrel. MB3 chamheese produced in INFN Legnaro National
Laboratory during the years 2001-2005.
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Figure 1: MB chamber cross section.

2.1 Brief Detector Description

A CMS muon chamber [2] consists of 3 independent units, dalBuper Layers” (SL), attached to a structural
honeycomb support, as shown in Figure 1. Each SL is composddtanes of parallel rectangular drift tubes,
called "layers”. Each layer is staggered by half cell witegect to the contiguous ones. Two SLs, narfiéd;;
and S Lgs, have wires in the same direction. In CMS they measure thenrtmagk position and direction in the
bending planed{ — ¢ plane in the CMS coordinate system). The third SL, nasiéd, has wires in perpendicular
direction and measures the track coordinate parallel tbélaen direction.

The cross section of a drift tube is shown schematically gufé 2. The pitch in a layer &2 mm. The distance
among the wire planes of two consecutive layers3isnm. The electric field in the drift cell is shaped by three
electrodes: a wire, kept at positive voltage, where thetlaanultiplication occurs, two cathodes at negative
voltage, and two central strip electrodes with voltagermidiate between wire and ground, whose purpose is to
improve the field uniformity along the drift path. MB3 chamlvére length is237.9 cm and302.1 em for ® and

O SLs, respectively. EaclLg contains286 channels, while the Lo contains227 channels, for a total 0f99
channels per chamber. Any charged particle going througdl @lume will generate a signal in its anodic wire.
The measurement of the arrival time of the discriminatedaigerformed by the read-out electronics allows the
later reconstruction of the particle track.

The wire signal is processed by the front-end electroni€&y {#], composed by a fast charge preamplifiéd fs
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Figure 2: Schematic view of a drift tube. The drift lines (tionous lines) and the isochronous surfaces (dotted
lines), computed with the CERN program GARFIELD [3], arecadfiown.

integration time) followed by a shaper (shaping tifdiens) and a discriminator. Signals from the front-end
electronics are fed into the so-called MiniCrate, an alumirstructure attached to the honeycomb of the chambers,
hosting the DT trigger electronics (Trigger Boards - TRB) dhe Read-Out Boards (ROBs), together with the
necessary services.

The trigger electronics located in the MiniCrate deliversigger signal at a fixed time after the passage of a
particle. The details of the trigger electronics can be tbun{5]. The core of the system is a custom VLSI, called
"Bunch and Track Identifier” (BTI). Each BTI reads nine adjatwire signals in a single SL, and reconstructs
the alignment of the signals from the four layers of the SLe @lignment is checked by a sophisticated algorithm
called generalized mean-timer method, interpreted rqugsla line fit through the muon chamber planes using
the input drift times. An additional device hamed "Track f&bator” (TRACO) looks for alignment of the track
segments of the tw§' L. The number of aligned hits (3 or 4) in the SL segments anddhelation between the
segments of the tw@ SL are used to define a quality flag of the trigger. A third devitthe chamber trigger
chain, the "Trigger Server” (TS), selects the two best quadacks in the whole chamber.

The system has been designed for use in LHC, where partiddsiached at thé0 M H =z accelerator frequency.
The trigger algorithm works on40 M H z cycle, and the trigger signal is therefore clocked at theesfreguency.

The Read-Out Boards (ROBSs) [6] are built around a 32-chalmigél performance TDC, developed by CERN/EP
Microelectronics group.

Neglecting the technicalities of the circuits, the TDC woelfectively in common-stop mode, the stop signal being
given by the trigger signal. All the wire signals receivedkaards in time from the stop in a fixed time window,
in our cases.2 usec, are read from the TDC buffers. Each TDC output value is tine firom the beginning of the
time window to the arrival time of the wire signal, measuned DC units, equal t@5/32 ns.

In standard chamber operating conditions the electrofis/gtocity in the cell has approximately a constant value
along the full drift path. Therefore, neglecting the smaleato-wire signal propagation corrections (of the order
of the ns), the difference between the TDC times of different wirediigctly proportional to the difference of
distance of the muon track from the wires. For this reasoT D€ raw time histogram, shown in Figure 3, has a
box-like shape, commonly called "time-box”. The box widtbpresenting the maximum drift time in the cell, is
about400 ns. The tail on the right hand side is due to secondary elecegtracted from the cell walls from UV
photons generated by the initial avalanche [7].

To measure the differences of the signal propagation timoes FE to ROBs, due to different cable lengths inside
the MiniCrate, a common test pulse signal can be injectedgath FE amplifier channel. The TDC measurements
of the test pulse arriving time is used to correct the TDC ougf each channel before data analysis. After this
correction, the TDC value for each channel measures extilyime interval from the TDC time origin to the
time at which the signal reaches the FE, within a systematic that can be estimated to be of the orded.6fns.

2.2 Experimental Setup in Legnaro Laboratory

In the present study, two MB3 chambers were placed horiflgma the cosmic stand in Legnaro. The cosmic ray
rate through a chamber is ab@®) Hz. Cosmic ray data were collected with the chambers operatisgandard
conditions as far as gas-mixture, HV settings and discitointhresholds are concerned. They were filled with an
Ar(85%) — CO5(15%) gas mixture, kept at atmospheric pressure (typigaky 1020 mbar), with a gas flow of
0.2 I/min, roughly corresponding to one full gas exchange every 3.dHys standard high voltage values of the
cell electrodes wereV,;,e = 3700 V', Vitrip = 1800 V, Vegtnode = —1200 V. At these voltages, and with the
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Figure 3: Example of cosmic ray raw time histogram.

gas mixture quoted above, the drift velocity has the appnaxély constant value afp, = 55 um/ns along the
full drift path [2].

The two chambers have been aligned in the stand with a psaddiaboutl mm, with the wires parallel within
0.5mrad. In this way the angles measured in thand theO views of the two chambers can be directly compared
without off line alignment corrections.

The cosmic stand setup also includes a system of four pkedtitillators, located below the bottom chamber, at a
vertical distance of aboutm from it. The time resolution of this system is worse than titeinsic resolution of
the chambers, as obtained with our off line analysis. Intamtdithe scintillator setup limits the space and angle
acceptance of cosmic ray muons. For both reasons we decaldd nse the scintillator trigger to collect the
data presented in this note, but to use only the trigger ésbye¢he chamber trigger electronics (autotrigger in the
following).

3 Cosmic Rays Detection

In this section we will explain in detail the source of the ertainty on the muon exact crossing time determination,
when cosmic rays are detected with CMS muon chambers. Thethlp discussed in this note allows to infer it
with the best possible precision, with a final resolutionhaf brder o2 ns.

3.1 AutoTrigger Timing with Cosmic Rays

As pointed out in Section 2.1, the TDCs allow the measurepfenteach cell, of the time difference between
a time origin related to the trigger signal and the time of slgnal from the cell. A more detailed treatment is
necessary at this point, to understand the relation betwee=id DC time origin and the time of passage of the
particle through the chamber.

The Level 1 trigger signal is not simply issued after a fixeldg&om the particle crossing, but after a fixed number
of clock cycles following the clock in which the passage @& farticle has happened. The TDC time origin in turn
is located a fixed number of clock cycles before the Leveldgei signal. Therefore there is a fixed number of
clock cycles between the TDC time origin and the clock edgmaeaiately preceding the particle passage. Let's
call ¢;4 the time of this clock edge,, the time of passage of the muon afidthe difference between them:
to =ty — tirig, SO thatt, = t4.44 + to. From what we just said, the distance in timetgf, from the TDC time
origin is the same for all the tracks, and can be determinad the time box distribution, as we shall see in the
following. On the contraryt is different from track to track, its value spanning the mfg- 25 ns.



In CMS, during LHC operation, particles are produced inismhs bunched in time at the same frequency of the
clock used in the trigger circuitry. Therefore there is adixtase relation between the time at which the muon
leaves the interaction point and the clock signal. As a ogusiece the value af) is calculable using the time of
flight of the muon from the interaction point to the chambent tive timet,, at which the muon crosses a chamber
is exactly known for every muon.

This is not true for cosmic rays, that arrive randomly disited in time. For theny is randomly distributed in the
rangel = 25 ns and is not directly calculable. It is one of the purpose of tivte to discuss a method to infer the
value ofty in an optimal way from the measurement of the twelve chandyerk.

From what we just said,,;, can be computed from the known behaviour of the trigger eaits. Alternatively,

it can be measured from the time box histogram. This secortiadallows to automatically take into account
the effects of the transit time of signals through cabling &igger circuitry. Consider muons passing through
the wire of a cell. For them the charge amplification occuitheuit appreciable delay with respect to the particle
passage and the time at which their signal arrives to the pEaiticallyt,,. Since the signal transit time from FE
to ROB is corrected using the test pulse information, as gagdiously, for these muons the TDC value is equal
tot, = tirig + to. All the other muons, hitting the chamber far from the wirgh kave TDC values bigger than
this, because their signal will be delayed by the drift tifiéaization electrons. Sincg is randomly distributed

in the range <+ 25 ns, in the time box histograrty,;4 is the smallest of all the measured times, the point at which
the time box histogram starts.

The purpose of the signal time measurement is to measurethedrossing point using the drift time of ionization
electronstq,ires = trpc, — t, for cell i. Using the trigger information alone, the best approxioranf¢, is

t, = g + 12.5 ns. This estimate of drift time suffers from thg intrinsic uncertainty. The r.m.s. of thg
distribution is25 ns/v/12 = 7.2 ns, corresponding to a position error 6f 400 zm on each layer measurement,
completely correlated among the layers. This value has tmbgared to the intrinsic resolution of the drift cell,
known from test beam measurements to be of the orded®f.m.

When fitting a straight line track through the measured Hits efffect of the timing error on the track parameters
partially cancels out, as it is evident if the trajectory igls that the wires of consecutive layers lay on opposite
sides of the track (see the event display plot in Figure 5 fmifecation). However, independently from the size

the effect on the track parameters, the residuals from tieel fine will be anyway affected. This has two negative
effects:

1. A muon track crossing the chamber layers can produteag with enough energy to generate ionization
electrons far from the muon trajectory. If those electromsdoser to the wire than the muon track, they
will produce a signal masking the muon track signal. The mieskdrift time will be shorter than it should
be. The probability for this to happen s 5% per layer [7]. A fraction of these wrong-measured hits can
be eliminated with a cut on the tails of the distribution o tlesiduals. The broader the distribution, the less
efficient will be the cleaning cut.

2. A considerable fraction of the cosmic muons has so low a embam that the trajectory through the chamber
is affected by multiple scattering in a sizeable way. As aseguience, the chamber space precision appears
to be worse with cosmic rays than with high energy partickesswe will show in the following chapters, if
the residuals of the track fit are not much larger comparelde@ffect of multiple scattering, it is possible to
use the average residual value to select a sample of cosnoogmnriched in the high energy component,
recovering the precision obtainable with high energy testiis. The operation is not effective if the residual
distribution is too broad.

4 DT Chamber: Local Track Reconstruction

As pointed out in the previous section, it is imperative teedmine the exact particle drift times in cells, not affetcte
by thet, uncertainty, in order to reconstruct muon tracks obtainh@gbest track parameters. In this section we
will explain the procedure to estimate track parameterk wisimple line fit, and the improved algorithm with
estimate.

4.1 DataSample

The results of this note refer to the analysis of a sample @fitd million cosmic ray tracks collected in autotrigger
mode. Only events where a single track could be identifieath kiews of the two chambers were considered for
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the analysis.

To measure the particle trajectory, the measured pointftaé with a straight line in both views. In all the fits
that will be discussed in the following paragraphs, to rediihe bias from) rays, hits with a too large residual
are rejected. This is done iterating the fit, discarding ahdaop the point whose residual from the fitted line is
greater than 3. The value ot for reasons that will be discussed in Section 5.2.2, isehts be function of the
track anglex in the plane perpendicular to the wire as (250 + 200 - a2) um . The iteration is stopped when
all the remaining points lay inside the cut. Events for wHis$s than 6 points are left in thie SLs, or less than 3
in the® SL, are discarded.

Figure 4 shows the distribution in angle and position of #hleced events.
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Figure 4: Slope and intercept distributionsiirand© views.

Events are retained for the analysi$if(®)| < 0.8 and|tg(©)| < 0.8.

4.2 Simple Straight LineFit

The first step in any track reconstruction is the so-calldteparecognition, where the hits belonging to the same
muon track are identified and the left-right ambiguity irévgrto any drift chamber is solved (see the event display
plot in Figure 5 for clarification).

Thanks to the low flux of cosmic rays, the average time sejpairbetween consecutive events is three orders of
magnitude larger than the maximum drift time of ionizatidectrons in a cell. Therefore for most of the events
only one track is present, making the pattern recognitiorom eritical task. We used the pattern-recognition
software developed for the official CMS OO-reconstructioognpam ORCA [8]. The algorithm was adapted to
cosmic muon reconstruction simply increasing the measeméerror to~ 450 um, to take into account both the
to uncertainty and the possible effects of multiple scattgfar low momentum muons. A linear drift space-time
relationship inside the cell was assumed, with a uniforrft gelocity vp = 55.0 wm/ns. The algorithm loops
over all the possible hit combinations in each SL indepetigesind in the 25 Lgs combined, selecting the best
straight line fit, i.e. the one with the biggest number of p@&nd the lowest?.

A simple straight line fit is therefore used to computed themirack parameters. The track distance from the
wire in celli is deduced from the drift timé ;. ;), assuming linear space-time relationship and using only
to estimate,,, neglecting the, variation. This simple straight line fit gives broad residudistributions, as could

be seen in Figure 6, where the best estimate of the standuaiatide of residualsg = /)", res?/NDF, is
plotted.

A very useful quantity to study the drift time measurememicigion is the so called Mean Time (MT).

To understand the properties of this quantity, considet Figure 7. It shows a track passing through a SL,
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Figure 5: Example of a single event display. The left-rigihibéguity of the hits is shown with a cross. Black dots
show the position of the wires.
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and contained in a semi-column, the gray region in the figtweposed by four half cells located in the same
coordinate interval. Led; be the distances of the track from the wires in the four plamesasured in each wire
plane. The following geometrical relations hold:

Figure 7: Example of a track completely contained in a selaina (the gray area).

dy +d

D= == +d (1)
dy +d

D= 22 L 4 ds 2)

where D is the width of the semicolumn (half the wire pitchpeTrelations hold for any angle or position of the
track, as long as it is contained in the semi-column. If theceptime relation is linear, similar equations hold for
the drift times:

tarift, + tdr
MTi23 = H + tarift,- (3)

thiftg + td’l“ift4

MTy34 = 5

+ td’l“iftg . (4)

where the subscripts 123, and 234, indicate the three lay@g in the combination. Since the MT value is
constant, equal to the time needed to drift across the fali-eelumn, its experimental width is directly related to
the precision of the drift time measurements.

Figure 8 shows the MT distribution when the drift times arenpoted neglecting thg correction.
The distribution is aboui0 ns wide, as expected from th& ns uncertainty ort.

The tail visible in the figure on the left side of the peak is doié-ray production, as described in section 3.1.
To avoid biases, in the following analysis we will always m@e@ the MT average value and resolution fitting a
Gaussian function to the peak region of the MT distribution.

4.3 Single Chamber Fit with ¢, estimate

As discussed in previous chapters, if we avoid usinghen computing the drift times we introduce an unnecessary
large error. Since any error @n,;s:,; increases the residuals of the trackd#itcan be left as a free parameter in
the track equation and its value estimated minimizingythef the fit.
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Figure 8: Mean Time distribution whef,;, is used as time of passage of the particle on the wire.

This procedure has already been used to analyze cosmic @atd(]. The present note carries forward the
previous works, extending it to the simultaneous analysalahe 12 layers of one or several chambers to obtain
the best possible determinationtgf and therefore the best determinatiort pf

The trajectory of the particle is described by 2 independ#aight lines in® and© views. The points associated
to a track are identified by the coordinates y;, in each layet, where ther coordinate is in the wire plane and
orthogonal to the wires, anglis orthogonal to the wire planes. Thecoordinate is already assumed known from
the nominal geometry of the chamber. Thecoordinate depends on the drift timg; 7. ; and on the drift velocity
vp. The drift velocity could be left as a free parameter in tlaekrequation and its value and uncertainty estimated
minimizing they? of the fit too (see comment below). Let's defihe= trpc; — tirig, Wheretrpe,; is the raw
time read from the TDC channel of witeBeingt,, = ti.;q + to, We havel ;i ; = trpc, — tu =t — to.

We will assume a linear dependence between drift time andnneoordinate in the wire plane, given by the
expression:

x; = fi + €uptarife,i = fi + €vp(ti —to) = fi + €vpti — €20 %)

where:

- f; is the nominal x coordinate of the wire where the signal wdlected. The chamber construction procedure
guarantees that the actual wire position differs from thminal one by at most00 pum;

- ¢; value is +1 or -1, depending on which side with respect to tine thie track isg; is assumed to be known from
the preliminary pattern recognition algorithm;

- 9 = vptg. The use of the variable, in place ofty simplifies the fit equations.

In the following equations we will use different indexes tbe layers of th& and© views:

e jindex is used for the & layers. The straight line has equatiepn= my; + a. The angular coefficient m is
0 for tracks perpendicular to the chamber.

e jindex is used for the & layers. The line isx; = ny; +b.

Thex? function to be minimized to find the best lines interpolatihg points is:
2= sz[h — (my; + a)]® + ij [z; — (ny; + b)) (6)
i J

wherew; = 1/0?. The erroro; should include both the measurement error and the errorngpfrom multiple
scattering, if known. In the analysis of this note, since wendt have information on the muon momentum, the
multiple scattering contribution cannot be consideredmeaent by event basis.

Making z; andx; dependence fromp andz, explicit, we have:

X? = Zwi[fi + e;upt; — €z — my; — a)]* + ij[fj + €jupt; — €;x0 — NY; — b)? @
i J



The variables to be determined by minimizing thefunction are the slopes, n, the intercepts, b in the ® and
O views, the variable:y connected ta, and the drift velocity .
The system to be solved ¥ v = T, where the matrix M is:

ety
Cow 00 ST -8
vl O o s, s s, -8

o 0 S w S =5
si, Stos, S S gt

€y €y €

Sp Sy 0 0 S, -8

Sy Si Sle Sh S =S
and
7: (mv a, n, ba o, UD)

, L i i
C= (S, Si S, Sk SiH. st
The symbolsS?,, indicate the sund _ pigir;.
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In this system the drift velocity is left as a fit parameter.wéwer, beingyvp the same for all the particles, more
precise results can be obtained fixing it to a value detemnindependently. The modifications of the above
equations to use a fixags are straightforward. Except when explicitly quoted, theutts shown in the following
have been obtained using a fixed value pf= 54.7 um/ns.

4.4 Two ChambersGlobal Fit

The method can be extended to any number of layers. A glolwdldit the 24 layers (the 2 chambers in sequence)
is possible in our setup. In the present note we focused yn#nthe single chamber fit, because we want to
measure the precision obtained through the comparisoreakesults of the two chambers. Only as a conclusion
of the main goal, in Section 6, we will present some result giiodal fit procedure.

As a reference, we give here the equations used in the glob&rfiadditional couple of indexes for the second
chamber® and© views is introduced:

e kindex is used for the 8 planes of chamber 2&LThe straight line has equation = py;, + c.

e [ index is used for the 4 planes of chamber 2@LThe line is:z; = qy; + d.

The x? function, withvp andz, explicit dependence, this time is:

X2 = sz[fz + Q’UDtZ' — €20 —MyY; — a)]2 + ij [fJ + Ej’UDt]' — 6]'2() — nyj — b)]2+

' ! ®)
Y wilfi + evvnty — exzo — pyr — o) + > wilfi + ewpti — a1z — qyi — )]
k l

We have to find solutions fal/ v = ﬁ, were:

S, S, 0 0 0 0 0 0 S, —Sly,

S, w;, 0 0 0 0 0 0 St —S%,

o 0 S, S 0 0 0 0 Si, -5,

0 0 S w, 0 0 0 0 S -5,
v 0 0 0 0 Syky sk0 0 Se,g —seiy

0 0 0 0 S w 0 0 Sh —Sk

1 l 1 1

o o o o o o S, 8 St ~5St,

0o 0 0 0 0 0 S w St -SL

S;y SZ: Sgy Sg Sfy Sf Séy Sé Séjj+k+l 752:‘.j+k+l

Sty S S, S, Sk, skosl, Sl SR _gifih
and
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T = (m7 a, mn, b7 p, ¢ g, da Zo, UD)
Val i i J J . i+j+k+1 i+j+k+1
C= (Syy, Sy Sty Sp Sy S Spye Sy SpTTL SR

45 Drift TimeCorrections

The distribution of the standard deviation of residualafter the single chamber fit withy estimate is shown in
Figure 9. The Mean Time is shown in Figure 10 as well, computadg thet, fitted value.
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Figure 9: Standard deviation of residuélérom straight line fit witht, estimate.
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Figure 10: Mean Time for chamber 1 SuperLayers, computadjubit, value from the chamber fit.

These figures should be compared with Figure 6 and Figure 8ewthet, was not considered in computing
tarife. The fit of thet, parameter has improved the hit resolution. However, thg tail on the high side of
shows that systematic effects are still present.

We can identify two of them:

1. Signal-propagation along the wire: the muon generates/alanche around the wire in the vicinity of the
intersection between the track and the chamber layer. ®wutriel signal propagates then along the wire to
the front end discriminator. Since the propagation timeeteis on the impact point, a correction must be
applied event by event.

2. Track angle correction: a linear relationship betweerdittift time and the coordinate of the track in the wire
plane is assumed when deriving the equations used in thenfit.aBsumption is no longer correct for tracks
at large angle of incidence, due to the cell field shape (sedrift and isochronous lines in Figure 2). For
large angle tracks, the first ionization electrons arriimghe wire make a shorter path than the electrons
released near the wire plane. The delay of the latter depmmtise angle of the track but also on the muon
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track distance from the wire. We will assume that a largetivacof this effect can be accounted for by a
simple shift of the time measurement.

Taking into account those effects, the correct expressiothe drift time is:

tarifts =i —to — tpi + ta 9

where:

- tp,; is the signal propagation time along the wire from the tracssing point to the FE. It is different in the two

& and© views, but is essentially the same for all the layers in a yiew

- to,i is the phenomenological correction used to take into addatenon linearity of the space-time relation for
inclined tracks. Again, it is different in the twd and®© views because it depends on the track angle in the plane
perpendicular to the wires, but it is the same for all the laye a view.

Since both,, ; andt, ; are different in theb and© views, in order to make a simultaneous fit over all the twelve
layers we have to correct the measured drift times for théieets. It is useful to remark here that if we limit the
fit to one view only, the, parameter in the fit will automatically absorb theandt,, corrections. In this case, the
fitted value of they parameter, that we shall callg or tgo depending on the view considered, will be related to
thet, correction bytge = to + tpe — tas in the ® view, ortpe = to + tpe — tae in the O view. In conclusion,
the best,, estimate, using the fit over all twelve layers, requires lgthandt, ; corrections. In the following
subsections we will explain how we evaluated these two ctioes.

45.1 Signal propagation along thewire

The propagation time along the wire can be measured studyengariation of the MT mean value, as a function
of the track impact point position. The Mean Time is a good bmause its width is small, and a variatidn of
tarife,; Produces a MT variation twice as bigk (MT) = 2 - At.

We proceed as follows. We fit a straight line through the efgints of thed® view only, finding the bestye
parameter (we choose tleview due to the larger number of layers). This fittgg, as discussed before, includes
the propagation time along tllewires. We then use it to compute tRedrift times for M T computation.
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Figure 11:MTg mean value versus distance from Front Ehdusingtoe astg value.

Figure 11 shows thé/Ty mean value in small intervals of distance from td-ront End plotted against the
distance. Figure 12 shows the same quantity plotted aghi@stistance fron® Front End. Sincél/ T depends
on both distances, a more precise measurement of the ptapagalocity can be obtained in a plot where the mean
MTy is plotted against the difference of the distances fromuloeftont ends. Figure 13 gives this last correlation.
Fitting the latter plot with a straight line gives a signabpagation velocity ob,,,, = (24.0 £0.1) ecm/ns,
where the error is statistical only. The value, used in thieiong analysis, is consistent with the less precise
determination reported in [11] and with test bench measargm
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Figure 12:MTg mean value versus distance from Front Endusingtys ast, value.
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452 Track Angle Correction

The analysis presented in this section has been done dngdiee drift times for the propagation time along the
wires, as explained in the previous chapter.

To investigate the effect of the track angle, we first used\ttig, variable.

As in the previous paragraph, we fit a straight line throughetght points of the view only and use the fitted
toe to compute thed drift times for M T computation. To limit the analysis to the dependence oretlangle,
we selected tracks with small anglednview (|®| < 0.1). In this way, we are guaranteed that the resulting
from the fit is not biased by largé angle contributions.

The meanV/ Ty value as a function dd is shown in Figure 14. The Mean Time changes by aBowutfor angles
up to25°. This result is in agreement with the analysis performedipusly, see for example [9].

‘ Chamber 1 Mean Time © Mean versus tgo, for |tg®d|<0.1 ‘

w
©
o

MTg Mean (nsec)
&
a1

380

|

Mean
RMS

Entries

12
0.04986
0.3153

—
- H
375~ -
r Chamber Fit:
L t0 time correction
370; signal propagation correction
r no track angle correction
[ no delta rejection
W07 o 0 0z o4 o6
tg®

Figure 14: Mean Tim® versusO slope when vertical tracks are selectediniew and usingys ast, value.

Unfortunately, the use the Mean Time restricts the anatgsisacks contained in a semi-column. This constraint
biases the distribution of the impact point and limits ttaekrslope to the range [-0.5, +0.5]. To extend the analysis
to the full angular range of our data sample, and with an geloia distribution, we devised a different method.
We fit the track in the® and® view with independent values &f, obtaining the best estimatesgf andtye.

We then study the dependence on the track angle of the differdt, = toe — too. Since the propagation time
effect is corrected for, we havdty = (tg — taa) — (to — tao) = tao — tas-

We first select tracks with a small slope, for whicht,¢ is negligible, so thatty, ~ t,e. Figure 15 shows
how At, depends on th® slope. The shape is almost perfectly parabolic in the fuljudar range. The same
result is obtained choosing tracks with sm@lland plottingAt, against the? slope. We expect therefore that
for all the events, without any angular cut, the differeddgy will depend on the track angles ag¢g = — K -
{(tg(l))2 — (tg@)ﬂ . This is confirmed from Figure 16. A linear fit to the data oftfigure gives foi the value

K = (19.79 + 0.04) ns. This value will be used in the following analysis.

5 Analysisof Chamber Fit Results

The full data sample has been reanalyzed applying all diorecdiscussed so far. All the tracks were fitted in
each of the chambers separately, following the method ibestin Section 4.1. Before the fit, the drift times
were corrected for the effects of signal propagation altwegwtire and for non linearity at large angle, using the
preliminary values of impact coordinates and track anglesngoy the pattern recognition track fit. In this way the
to value given by the fit represents the track crossing timerfigrimpact point or angle of incidence of the track.

51 ¢, resolution

The main purpose of the fit procedure discussed in this ndterisinimize the track position errors by obtaining
a precise estimate of. To measure the precision obtained, thestimates of the two chambers are compared:
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Figure 15:(tpe — tos) Versus track slope before angle correction.
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Figure 17 shows the histogram of the difference of the twaesl The r.m.s. of the distribution is equaBtd ns,
from which at, precision 0f2.4 ns for the single chamber fit is deduced. Neglecting the tdiks,Histogram can
be fitted by a gaussian function widh ns width, corresponding to a chamber time resolution .8fns.
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Figure 17:t, difference between chamber 1 and chamber 2, all correcéippied.

The average value of thg difference histogram measures the muon time of flight (J.drtbm the upper to the
lower chamber. The distanéebetween the middle planes of the two chambers in our standsis cm, therefore
the t.o.f. for vertical tracks is- 1.6 ns, compatible, within the systematic errors, with the meegdurl ns.

However, the t.o.f. is expected to vary with the track anglé &os («), wherea is the angle of the track with
respect to the vertical. The t.o.f. variation with the tracigle is not affected by the systematic uncertainties on the
time measurement. Figure 18 gives the average value of ttiéference in small intervals of the angheplotted
againstl /cos (). We observe the expected linear dependence, and the shze wdriation is what expected from

the relative distance of the two chambers.
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Figure 18:t, difference for chamber 1 and chamber 2 versl®s («).

The good precision of thig determination implies a narrow distribution of the Mean@iwariable, as observed in

Figure 19.
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5.2 Residuals

|
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Figure 19: Mean Time, all corrections applied.

MT (ns)

The distribution of the standard deviation of residualsheftrack fit,s, is shown in Figure 20. The mean value is
now ~ 300 um, lower than the value df30 um observed in Figure 9, but still larger than the200 um observed

with test beam data.
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Figure 20: Standard deviation of residuéalfrom straight line fit with all corrections applied.

We can identify two possible sources for this discrepancy:

e The cosmic muons momentum spectrum has a large componesw ahbmentum particles, down to few
hundred MeV: in this range the multiple scattering in thenashar material can have a sizeable effect.

e The angular distribution of cosmic ray data is much broabdantwhat is usually considered when taking
data in test beams. As discussed in Section 4.5.2, the ilipdstween drift time and distance of the track
crossing point from the closest wire fails for large angbcks. Therefore we expect larger residuals for
large angle tracks.

These hypothesis will be analyzed in the following sections



5.2.1 Residualsand Muon Momentum

While for high momentum tracks the residuals are essentiklly to the measurement errors, residuals for low
momentum tracks are expected to be larger, due to the ireteasltiple scattering of the particle through the
chamber material. Therefore, a correlation between theditluals in the two chambers is expected, larger for the
low momentum component of the spectrum. This correlatiamdeed observed in Figure 21 were the distributions
of residuals in one chamber are shown for different interadthey? value in the other chamber.
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Figure 21: Standard deviation of residuals to the track fitiamber 1 for different? ranges of the fit in chamber
2.

Figure 22 shows the standard deviation of residuals digtdb for tracks with smal and© angles (®| < 0.2,
|©| < 0.2) and small residuals in chamber 2 ( chambef?2< 15). The mean value is aboR80 um, a value not
far from test beam data [11].
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Figure 22: Standard deviation of residuals of chamber 1 fisfoall® and© angles and low? in chamber 2.

5.22 ResidualsversusAngle

Figure 23 shows the distribution of residuals in th@iew for different® angle slices. A clear correlation of the
width of the distribution with the angle is observed.

To measure the correlation, the data were divided in s@nalices and the standard deviation of residuals in the
d view was computed in each bin. The mean value aof is plotted in Figure 24 versus the central value of the
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Figure 23: Standard deviation of residuals to the track fitiamber 1, for differen® ranges.

® interval. An approximate quadratic correlation is disgldy The observe@® dependence of residuals can be
due both to the multiple scattering, since at large anglegpétticle traverses a bigger thickness of material, and
to the non linearity effects of the space-drift time relaticA Monte Carlo simulation, in which the momentum
spectrum of the cosmic muons and the materials of the chastitpeture have been taken into account, and where
the space-drift time relation has been assumed to be linedlr @ngles, is also shown in Figure 24 with dotted
lines. The contribution of the multiple scattering to thergase of residuals appears to be small. The effect of
non linearity could be corrected in principle by measurimg éxact space - drift time relation as a function of the
angle. This further step is outside the scope of this notenalhfle the subject of a forthcoming work.
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Figure 24: Mean value of the standard deviation of residunalsview, versusb angle, compared with MonteCarlo
simulation (dotted lines).

5.3 Track Slope Measurement Precision

Being the two chambers well aligned, a comparison of theeslopeasured in the and© views allows to measure
the precision with which the slopes are measured. &lstope difference measured in the two chambers is shown
in Figure 25. The r.m.s. value of the histogram, in the rand@ mrad, +40 mrad is 9 mrad, corresponding to

a ® slope precision of about mrad, much larger than thewrad resolution measured in high energy test beam
data [11]. Again this is due to the fact that the cosmic muomeratum spectrum extends to values as low as few
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hundred MeV/c. For such muons the multiple scattering cadifythe direction of the particle by an angle bigger
than measurement resolution. This result is well reprodigethe Monte Carlo simulation quoted in the previous
paragraph. The distribution predicted by the simulatioshiswn as a gray area in Figure 25.
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Figure 25:9 Slope difference between chamber 1 and chamber 2, compéatetanteCarlo simulation.

We can recover thé slope precision using again the {it in one chamber as a filter to cut the low momentum
component of the cosmic ray spectrum. The correlation igrdi®m Figure 26, were thé slope difference
histograms are shown for different intervals of chambgf 2

The resolution of th® slope, shown in in Figure 27, is too big for the effect of npl#iscattering to be important.

The fitted slope in theb view is much more precise than the one in theview mostly because of the large
separation between the twioSLs. This large separation has also the positive effectiigaslope measurement is
less affected by systematic errors deriving from the assiomghat the space-drift time relationship is linear. It is
therefore interesting to compare the measurement obthagle obtained with one singie SL, calledg, or ¢,

in the following, and the one obtained with both Skis). To look for systematics effects, data were divided in
bins of ¢12, and theA¢ = ¢15 - ¢ distribution of each sample was fitted with a gaussian fonctiFigure 28
shows the mean value and the width of the gaussian functaiteglversus the central value of thg interval for
chamber 1. No systematic effect is visible, apart from ahsligcrease of the width for the larger angles. The small
shift from zero of the mean value is compatible with the carcdion alignement precision of the layers inside a
SuperLayer, better thatd0 pm.

This result guarantees that the angle measurement i thew, obtained with one superlayer only, is not affected
by significant systematic biases.

The same analysis was repeated in chamber 2. The absenasafduild be observed there only after having
increased the distance between the 8L by 1.5mm with respect to the nominal value. We verified a posteriori
that the honeycomb panel of this chamber had been builtdmutsierance, and the thickness wasmm larger
than the design value. This shows that the measurement wficogay tracks can be a powerful tool to spot and
correct construction anomalies of the chambers.

5.4 Fit of thedrift velocity

As already said, all the results presented until now have loé¢ained fixing the drift velocity value top =
54.7 um/ns. On the same data sample, a fit with the drift velocity left ree fparameter was also performed.
Figure 29 shows the value of the velocity given by the fit inheatthe two chambers. The average value in the
two chambers are very close and consistent with the valuese in the fits withvp kept fixed. The r.m.s. of the
distribution is~ 4%. This is the precision with which a single track can measheestfective drift velocity, if we
assume that it is the same in all the layers.
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Figure 26:® Slope difference for different chamben?2 slices.
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Figure 27:0 Slope difference between chamber 1 and chamber 2, compétetanteCarlo simulation.
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Chamber 1: ®, - ®,, Mean vs ®,,
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Figure 28: Difference\® = ¢5 - ¢; plotted against the slope (see text for the meaning of syshb®bp: Mean
value of A® versusd. Bottom: Sigma ofA® versusd.
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Figure 29: Fitted drift velocity in chambers.
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6 Global Fit Results

A simultaneous fit to both chambers is expected to reducertoe @n ¢, by a factory/2, from 2.4 ns to about
1.7 ns.

We expect to observe the presence of such a small effect {f8B0mm to 90 um in space) only in events with the
best resolution. Figure 30 shows tieeslope difference histograms for different intervals of witweer 2x2. This
figure has to be compared with 26, where the same quantity lettedy but compute fitting the two chambers
independently. The improvement is present, more impoftribw y2. We cannot say if the global fit improves
the precision of the angle measurements, or if the decrdabe , error contribution on the residuals improves
the momentum selection operated by fffecut.
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Figure 30: Slope difference for different chambey2slices.

7 Conclusions

Two MB3 chambers assembled in the INFN production centeeghhro have been extensively studied using the
cosmic ray test facility which was set up in Legnaro to testthamber behavior. The analysis was used to develop
and check a fitting procedure to find the best timing precisiomuon crossing the two chambers, in absence of
external timing devices.

A timing precision from a single chamber 2f1 ns has been observed. Selecting tracks with j¢in a chamber
allows to select a sample of muons of momentum large enoumhthk resolution of the other chamber can be
measured with the same precision as observed in high enestiyp¢ams, with an uniform illumination of the
chamber and a large angular spread of the particles crofsrthamber.
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