
Introduction Structs Classes Namespaces Exceptions

Composite objects: structs and classes

P. Ronchese
Dipartimento di Fisica e Astronomia “G.Galilei”

Università di Padova

“Object oriented programming and C++” course

Object oriented programming and C++ Composite objects - 1

Introduction Structs Classes Namespaces Exceptions

Composite objects

C/C++ allow the definition of “composite objects”, i.e. objects
containing several variables and/or other objects

Useful to group together related variables/object
Two types of composite objects: struct and class :

struct comes from plain-C
class is C++-specific

struct Point {
float x;
float y;

}; // a semicolon is required

Object oriented programming and C++ Composite objects - 2

Introduction Structs Classes Namespaces Exceptions

Basic properties

Basic properties of composite objects

their pointer or reference can be taken and passed or
returned by a function
they can contain native variables and/or their pointers
they can contain other composite objects and/or their
pointers
they can contain pointers to themselves
(directly or indirectly)
they cannot contain instances of themselves
their “members” can be accessed
other properties (C++ specific, not available in plain C)
will be shown later

Object oriented programming and C++ Composite objects - 3

Introduction Structs Classes Namespaces Exceptions

Declaration and definition of structs

In C/C++ all variables must be “declared” before being used;
structs need also being “defined”

Declaration: a name is sim-
ply stated as identifying a
struct.
It can be repeated.

// Point declaration
struct Point;
Point* pp;

Definition: all the members of
the struct must be speci-
fied.
Only one definition can exist in
one translation unit.
A definition is also
a declaration.

// Point definition
struct Point {

float x;
float y;

};
Point p;

To create a struct the definition is necessary
To create a pointer the declaration is enough

Object oriented programming and C++ Composite objects - 4

Introduction Structs Classes Namespaces Exceptions

Access to members

When a struct has been created, its member are accessed
with their names

Point p;
p.x=-2.35;
p.y= 6.71;

The memebers of a struct can be accessed
starting from a pointer, too

Point p;
Point* pp=&p;
(*pp).x=4.59; // parentheses are needed
pp->y=-12.86; // equivalent to(*pp).y=-12.86

Object oriented programming and C++ Composite objects - 5

Introduction Structs Classes Namespaces Exceptions

Memory sharing: unions

In a struct the members are stored in memory sequentially;
in an union the members share the same memory locations.

All the objects are stored
starting from the same
memory location

union Misc {
float x;
int i;
char* p;

};
Misc m;

The size of the union is the size of the largest object
Only one object can be stored at once
Undefined results are obtained when writing one object
(e.g. m.x) and reading another one (e.g. m.i)

Object oriented programming and C++ Composite objects - 6

Introduction Structs Classes Namespaces Exceptions

structs and classes

class: the main improvement of C++ versus plain C
A class is essentially an evolution of a struct

Plain-C structs contain only variables or other objects,
C++ classes provide several new functionalities:

constructor(s) and destructor,
functions handling data members,
access specifiers to control access to data.

Object oriented programming and C++ Composite objects - 7

Introduction Structs Classes Namespaces Exceptions

class “interface”

The definition of a class, with all its functions,
is also called “interface”

class Point {
public: // accessible by all functions
Point(float x, float y); // constructor
~Point(); // destructor
float getX() const; // member functions
float getY() const;
float dist(const Point& p) const;
private: // accessible only by the class
float xp; // member data
float yp;

};

The standard extended to structs the properties of classes

Object oriented programming and C++ Composite objects - 8

Introduction Structs Classes Namespaces Exceptions

Constructor and destructor

The “constructor” and “destructor” of a class are executed when
an object is created or destroyed

Point::Point(float xi, float yi):
xp(xi),
yp(yi) {

}
Point::~Point() {
}

Data members are initialized in the order they’re declared
in the class definition, not as they’re listed in the
constructor.
Destructor is often empty; typical operations are:

delete dynamic objects used by the class
close files opened and used by the object
free other resources allocated by the object

Object oriented programming and C++ Composite objects - 9

Introduction Structs Classes Namespaces Exceptions

Function members

Function members (sometimes called "methods") have direct
access to member data of the object

float Point::getX() const {
return xp;

}
float Point::getY() const {
return yp;

}
float Point::dist(const Point& p) const {
return sqrt(pow(xp-p.xp,2)+pow(yp-p.yp,2));

}

Functions are declared const when
they do not modify any member of the object;

only const function can be called for const objects.

Object oriented programming and C++ Composite objects - 10

Introduction Structs Classes Namespaces Exceptions

Default constructor and destructor

If the definitions of a class does not contain any constructor
and/or destructor, “default” ones are automatically provided

Default constructor (with no arguments): the default
constructor for each member is called
Default destructor: the destructor for each member is
called
Default copy and assignment: each member is simply
copied

Copy constructor
The copy constructor takes one single argument, of the same
class. It’s used any time an object is copied:

When an object is passed to a function by value
When an object is returned by a function

Object oriented programming and C++ Composite objects - 11

Introduction Structs Classes Namespaces Exceptions

Declaration, definition and implementation of classes

A struct/class declaration can appear any number of
times
A struct/class definition (also called “interface”) must
appear once and only once in each translation unit using it
A struct/class implementation (functions code) must
appear once and only once in the whole program (function
implementation can anyway be inlined in the definition)

class definitions are usually coded in “header files”,
with “header guards” to prevent multiple inclusions

#ifndef Point_h
#define Point_h
class Point {
...

};
#endif

Object oriented programming and C++ Composite objects - 12

Introduction Structs Classes Namespaces Exceptions

Cross references among classes

Two (or more) classes may exist, each one using the other as
argument of it own functions: both must know about the other

class Line;
class Point {
...
float dist(const Line& l) const;
...

};

class Point;
class Line {
...
float dist(const Point& p) const;
...

};

Object oriented programming and C++ Composite objects - 13

Introduction Structs Classes Namespaces Exceptions

friend functions and classes

A class can declare friend functions and classes,
allowed to access it private members (use sparingly!).

class Point {
friend class Line;
// all functions of "Line" can access
// private members of "Point"
...

};
class Line {
friend
float Point::dist(const Point& p) const;
// only the function "dist" of "Point"
// can access private members of "Line"
...

};

Object oriented programming and C++ Composite objects - 14

Introduction Structs Classes Namespaces Exceptions

Self reference

Each instance can obtain the pointer to itself from this

It can be used as parameter when calling functions
It can be returned by member functions
It can be dereferenced to obtain the object instance

float Line::dist(const Point& p) const {
return fabs((a*p.getX())+(b*p.getY())+c)/

sqrt((a*a)+(b*b));
};

float Point::dist(const Line& l) const {
return l.dist(*this);

};

Object oriented programming and C++ Composite objects - 15

Introduction Structs Classes Namespaces Exceptions

Shared members declaration

Each “instance” of a class contains its own members, e.g.
each Point contains its x and y

A member shared by all the instances of a class can be
declared by using the keyword static

class Line { // ax+by+c=0
public:
Line(const Point& p1,const Point& p2);
~Line();
Point intersect(const Line& l) const;
private:
static float tolerance;
float a;
float b;
float c;

};

Object oriented programming and C++ Composite objects - 16

Introduction Structs Classes Namespaces Exceptions

Shared members initialization

Shared (static) data members are not bound to any specific
instance of a class

They are created at the execution start, even if no instance
is created in the execution (but for dynamic libraries)
They must be initialized, only once, outside any function

float Line::tolerance=1.0e-05;
Point Line::intersect(const Line& l) const {
float det=(a*l.b)-(b*l.a);
float chk=pow(a,2)+pow(b,2)+

pow(l.a,2)+pow(l.b,2);
if(fabs(det/chk)<tolerance)

return Point(FLT_MAX,FLT_MAX);
return Point(((b*l.c)-(c*l.b))/det,

((c*l.a)-(a*l.c))/det);
}

Object oriented programming and C++ Composite objects - 17

Introduction Structs Classes Namespaces Exceptions

Operator members

Not only functions but also operators can be defined for classes

class Vector2D {
public:
Vector2D(float x, float y);
~Vector2D();
float getX() const;
float getY() const;
Vector2D operator+(const Vector2D& v);
Vector2D& operator*=(float f);
private:
float xv;
float yv;

};

Operators are defined as other functions.
Assigment operators return a “*this”.

Object oriented programming and C++ Composite objects - 18

Introduction Structs Classes Namespaces Exceptions

Operators definition

Operator members are to be defined as member functions
Vector2D Vector2D::operator+(const

Vector2D& v) {
return Vector2D(xv+v.xv,yv+v.yv);

}
Vector2D& Vector2D::operator*=(float f) {
xv*=f;
yv*=f;
return *this;

};

Class operators can be used as the built-in ones,
or through explicit function calls

Vector2D u(2.3,4.5);
Vector2D v(-1.6,6.9);
Vector2D s=u+v;
u*=3; // equivalent to u.operator*=(3)

Object oriented programming and C++ Composite objects - 19

Introduction Structs Classes Namespaces Exceptions

Operator functions

Operators can be defined also as global functions,
where at least an argument must be a class

Vector2D operator+(const Vector2D& vl,
const Vector2D& vr) {

return Vector2D(vl.getX()+vr.getX(),
vl.getY()+vr.getY());

}
Vector2D& operator*=(Vector2D& v,float f) {

v = Vector2D(v.getX()*f,v.getY()*f);
return v;

}

Both implementations can be present
The compiler flags as an error any ambiguous call

u.operator+(v) calls the operator member
operator+(u,v) calls the operator function
Object oriented programming and C++ Composite objects - 20

Introduction Structs Classes Namespaces Exceptions

Functors

Objects usable as functions are called “functors”.

class Func {
public:
Func(int n):f(n) {};
float operator()(float x) {return f*x;}
private:
int f;

};
int main() {
// create a Funct setting it at 3
Func m(3);
// call the Funct with 5
cout << m(5) << endl;
return 0;

}

Object oriented programming and C++ Composite objects - 21

Introduction Structs Classes Namespaces Exceptions

I/O Operators

Operator functions can be defined to write/read objects

std::ostream& operator<<(std::ostream& os,
const Vector2D& v) {

os << x << " " << y;
return os;

};
std::istream& operator>>(std::istream& is,

Vector2D& v) {
is >> x >> y;
return is;

};

I/O operator functions take
a std::istream& or std::ostream& as argument,

and return the same at the end

Object oriented programming and C++ Composite objects - 22

Introduction Structs Classes Namespaces Exceptions

Nested classes

A class can be defined inside the definition of another one
(being visible outside or not if it’s public or private

respectively)

class Outer {
public:
...
class InnerPub {
...

};
private:
class InnerPri {
...

};
...

};

A public nested class can
be accessed by using the
scope resolution operator ::
Outer::InnerPub .
Examples will be shown in the
following.

Having several classes
nested inside the same en-
closing one emphasizes the
relations among them.

Object oriented programming and C++ Composite objects - 23

Introduction Structs Classes Namespaces Exceptions

Name conflicts

Names of classes must be unique throughout the whole
program (libraries included): conflicts could arise.

Functions
and classes can be
declared and defined
inside “namespaces”

namespace Geom {
class Line;
class Point {
...
};

};

Classes defined inside
namespaces can be
accessed by mean of
the “scope” operator ::

...
int main() {

Geom::Point p(1.2,7.4);
...
return 0;

};

Object oriented programming and C++ Composite objects - 24

Introduction Structs Classes Namespaces Exceptions

Default namespaces

Adding namespace to a class name produces a long name...
A typedef can be used
An using declaration or directive can be added

typedef Geom::Point point;
// define "point" as a short name

using Geom::Point;
// Makes "Point"
// visible out of namespace "Geom"

using namespace Geom;
// Makes all names in "Geom"
// visible outside

An using declaration or directive affects
all the following code in the same translation unit:
avoid including “using” directives in header files

Object oriented programming and C++ Composite objects - 25

Introduction Structs Classes Namespaces Exceptions

Error handling

A lot of situations may occur where an operation cannot be
performed:

a division by zero is required,
the square root of a negative number is required,
an unvalid pointer is to be dereferenced,
...

An error flag is to be set, propagated back and properly handled
(unless there’s some reason to prefer an execution crash)

Exceptions are objects that:
are “thrown” where the error condition occur
are “catched” anywhere in the function calling sequence
contain informations about the error

Object oriented programming and C++ Composite objects - 26

Introduction Structs Classes Namespaces Exceptions

Exception objects

Any object can be (in principle) used as exception
class MathException {
public:
enum errorType {divByZero,sqrNeg};
MathException(errorType e) {error=e;}
~MathException() {}
errorType get() const {return error;}
private:
errorType error;

};

float x;
int i;
...
if(i==0)throw

MathException(MathException::divByZero);
x/=i;

Object oriented programming and C++ Composite objects - 27

Introduction Structs Classes Namespaces Exceptions

Exception catching

Exceptions are handled by mean of “try” and “catch” blocks

try {
... // any code that could possibly
... // throw a "MathException"

}
catch (MathException e) {
if(e.get()==MathException::divByZero)

cout << "division by zero" << endl;
};

When an exception is thrown
all the calling functions are immediately terminated

going back until a “catch” clause is found.

Object oriented programming and C++ Composite objects - 28

	Introduction
	

	Structs
	

	Classes
	

	Namespaces
	

	Exceptions
	

