

PASCOS '04

Northeastern university, Boston, 16-22 August 2004

Dark Matter At LHC

Stefano Lacaprara

Stefano.Lacaprara@pd.infn.it

INFN and Padova University

- Dark Matter and SuperSymmetry (SUSY),
- SUSY Scenarios in mSUGRA,
- LHC reach for SUSY,
- Sparticles spectroscopy,
- SUSY Dark Matter with LHC,
- Conclusion

Large fraction of universe mass is dark (WMAP)

in units of $\rho_c = 1.86 \cdot 10^{-29} \ \mathrm{g/cm^3}$

Barion density: $\Omega_b = 0.044 \pm 0.004$

Dark energy: $\Omega_{\Lambda} = 0.73 \pm 0.04$

- Dark matter: $\Omega_m = 0.23 \pm 0.04$
- Dark Matter density: $0.0094 < \Omega_m h^2 < 0.129$ (2σ range)
- SuperSymmetry provide a good candidate for Dark Matter
 - If R-Parity is conserved, the lightest supersymmetric particle (LSP) is stable
 - Relic density of LSP can explain (fraction) of Dark Matter
- *"Natural"* candidate from a theory developed to solve different problems!

SUSY scenarios

- Use constrained MSSM: mSUGRA
- Only 5 free parameters (105 + 19 SM for generic MSSM)
 - m_0 universal scalar mass
 - $m_{1/2}$ universal gaugino mass
 - $\tan\beta$ ratio of two Higgs doublets VEV's
 - sign(μ) Higgs mixing parameter sign
 - *A*₀ trilinear SUSY breaking parameter
- LSP is the lightest neutralino: χ_1^0
- **•** NLSP is usually a slepton: $\tilde{\tau}$
- Heaviest SP is usually the gluino: \tilde{g}

Dark Matter due to relic χ_1^0

Relic density: $ho_{\chi_1^0} = n_{\chi_1^0} imes m_{\chi_1^0}$

 $n_{\chi_1^0}$ depends on LSP annihilation rate at early universe

SUSY scenarios

Co-Annihilation tail: $\tilde{\tau} \to \tau \chi_1^0$ forbidden. $\tilde{\tau}$ lives longher

Funnels (large $\tan \beta$): $m_0 \sim m_{1/2}$, $m_{\chi_1^0} \sim 1/2m_{A/H}$ resonant annihilation (if exactly *on-peak* too rapid)

Focus point: $\chi_1^0 \sim 100\%$ higgsino off-shell annihilation via h, H, A dominant $\chi_1^{\prime} \qquad f \qquad f \qquad f \qquad h/H/A \qquad f$

LHC benchmark points

Benchmark points on LHC reach from \tilde{g}, \tilde{q} production (jets+missing E_T)

Point	$m_{1/2}$	m_0	aneta	$sign(\mu)$
А	600	140	5	+
В	250	100	10	+
С	400	90	10	+
D	525	125	10	—
Е	300	1500	10	+
F	1000	3450	10	+
G	375	120	20	+
Н	1500	419	20	+
I.	350	180	35	+
J	750	300	35	+
К	1150	1000	35	—
L	450	350	50	+
М	1900	1500	50	+

SUSY discovery @ LHC

At LHC dominant production for *g̃* and *q̃* Strong production ⇒ huge cross section!

- Almost insensitive to $\tan\beta$ and $\operatorname{sign}(\mu)$
- Some reference:

 - ${\rm S} \ \sigma(Z \to l\nu) \sim 3 \ {\rm nb} \$
 - At High Level Trigger: Rate(MET+jets) $\sim 5 \text{ Hz}$
- LHC low luminosity: (L = 2nb⁻¹s⁻¹)
 for m₀, m_{1/2} just above limits: SUSY visible at trigger rate!

Typical SUSY event topology:

- isolated leptons (3)
- b-jets (2)
- **)** jets (4)
- Iarge missing energy

Triggering SUSY events

Trigger strategy is rather simple: many handles (CMS)

- Get maximum trigger efficiency and keep under control trigger rate
- Apply very simple selection to reduce model-dependent bias
- Low lumi:
 - 1 jets $E_T > 180$ GeV & missing $E_T > 123$ GeV
 - 4 jets $E_T > 113$ GeV
 - Solution Efficiency $\epsilon \sim 60 \div 70\%$ for low $M_{\tilde{q}} \sim 400$ GeV
 - \checkmark Background rate (QCD) $\sim 12~{\rm Hz}$
- High lumi:
 - missing $E_T > 239 \text{ GeV}$
 - 4 jets $E_T > 185$ GeV
 - $\ \ \, {\scriptstyle {\scriptstyle \bullet}} \ \ \, \epsilon(M_{\tilde{q}} \sim 2 \ {\rm TeV}) \sim 75 \div 90\%$
- More complex exclusive trigger possible
 Trigger consider also D wieleting models
 - Trigger consider also R_p violating models

Inclusive SUSY searches

Stefano Lacaprara – PASCOS '04, Northeastern university, Boston, 16-22 August 2004 – Dark Matter At LHC – p.10/23

SUSY spectroscopy

Second step: measure sparticle spectrum!

- Use benchmark point B:
- M₀ = 100 GeV, $m_{1/2} = 250$ GeV, $\tan \beta = 10$, $\mu > 0$, $A_0 = 0$
- Most favorable scenario: very light sparticles

4%

• $\sigma^{tot}_{SUSY} \approx 58 {\rm pb}$ Use long decay chains:

$$\frac{\tilde{g}}{\tilde{b}} \qquad \frac{b}{\chi_2^0} \qquad \frac{l}{\chi_1^0} \qquad \chi_1^0$$

Start with
$$\chi^0_2 ~
ightarrow ~\chi^0_1 l^+ l^-$$
 decay $acupsilon$

$$BR(\chi_2^0 \to \chi_1^0 l^+ l^-) \approx 0.04\%$$

$$BR(\chi_2^0 \to \tilde{l}^{\pm} l^{\mp} \to \chi_1^0 l^+ l^-) \approx 16$$

$$\blacksquare \mathsf{BR}(\chi_2^0 \to \tilde{\tau}^{\pm} \tau^{\mp} \to \chi_1^0 \tau^+ \tau^-) \approx 83.2\%$$

$$\ge 2 \text{ SFOS isolated leptons}$$
$$\ge 2 b - \text{jets}$$

$$E_T^{miss}$$

- Almost SM background free with simple cuts
- Final states with e^{\pm} or μ^{\pm} sizeable
- At larger $\tan \beta$ (eg point G), BR($\rightarrow \tau^{\pm}$) $\approx 100\%$ less favorable!

Dilepton mass edge

- Dilepton invariant mass has sharp upper edge
- due to 2 body decay of χ^0_2

$$M_{ll}^{max} = \frac{1}{m_{\tilde{l}}} \sqrt{\left(m_{\chi_2^0}^2 - m_{\tilde{l}}^2\right) \left(m_{\tilde{l}}^2 - m_{\chi_1^0}^2\right)}$$

When l^{\pm} back to back in χ_2^0 rest

NFN

Dilepton invariant mass vs tan β

CM

at fixed $m_0 = 100 \text{ GeV}, m_{1/2} = 190 \text{ GeV}, A_0 = 0, \mu < 0$

- Evidence for a $M_{ll} \text{ edge} \Rightarrow$ SUSY! Structure less
 - evident with increasing $\tan\beta$: $\rightarrow \chi_1^0 \tau^{\pm}$ χ^0_2 dominates

300

Other edges

for

energy

Sparticle masses

- Use 6 edge measurements: $M_{\tilde{q}_L}, M_{\tilde{b}}, M_{\chi_1^0}, M_{\chi_2^0}, M_{\tilde{l}_R}$
- Edges depends on mass difference ⇒ strong dependencies!
- Measure mass relation as a function of $M_{\chi_1^0}$ to ~ 1%
- $M_{\chi^0_1}$ determined to $\sim 10\%$

- If $M_{\chi_1^0}$ from extra LHC (eg LC) \Rightarrow fix mass scale for all other sparticles!
- Use to measure heavier sparticle masses

- At point **B** dominant χ_2^0 decay mode into $\tilde{\tau}^{\tau}$ (~ 80%) • At higher $\tan \beta$ (eg point **G**, point **I**) BR higher
- Study final state with τ s
- Use τ hadronic decay: τ -tagged jets
- Subtract same sign τ's
 to reduce SUSY
 background
- SM background small
- Edge on M_{τ}^{τ} invariant mass partially spoiled by ν_{τ} 's
- Distribution sensitive to edge position

Sbottom reconstruction

INFN ISTudo Nazionale di Fisica Nucleare

• Near the M_l^l edge:

$$\vec{p}_{\chi_2^0} = \left(1 + \frac{M_{\chi_1^0}}{M_{ll}}\right) \vec{p}_{ll}$$

Need to know M_{\chi_1}!
 Add most energetic b-jet to reconstruct sbottom

● Fit result:
$$M_{\chi^0_2 b} = 500 \pm 7 \; {\rm GeV}$$

Generated:
$$M_{\tilde{b}_1} = 496 \text{ GeV},$$

$$M_{\tilde{b}_2} = 524 \text{ GeV}$$

• With full statistics (300 fb⁻¹) possible to resolve \tilde{b}_1 and \tilde{b}_2

Gluino reconstruction

- **9** Combine \tilde{b} with b-jet
- Add other b-jets (closest in ϕ)
- Get gluino mass peak!
- Fit result: $M_{\chi^0_2 bb} = 594 \pm 7 \text{ GeV}$
- **9** Generated: $M_{\tilde{g}} = 596 \text{ GeV}$

Squark reconstruction

- Same procedure also for non bsquark $(\tilde{u}, \tilde{d}, \tilde{c}, \tilde{s})$
- Use non b-jets
- Higer statistics!
- \tilde{q} mass peak well visible with just 1 fb⁻¹
- Higer combinatorial background
 - Fit result:
 - $M_{\chi^0_2 q} = 535 \pm 3 \; \mathrm{GeV}$
 - Generated:
 - ${ { J } \hspace{.1cm} } M_{\tilde{u}_L} = M_{\tilde{c}_L} = 537 \; {\rm GeV}$
 - ${ { \ \, \hbox{ I} } \ \, } \ \, M_{\tilde{d}_L} = M_{\tilde{s}_L} = 542 \; {\rm GeV} \label{eq:mass_linear_state}$

Alternative approach (ATL-PHYS/2003-039) Use same decay chain

 $\tilde{g} \rightarrow \tilde{b}b \rightarrow \chi_2^0 bb \rightarrow \tilde{l}bbl \rightarrow \chi_1^0 bbll$

For each event set of kinematical equations:

$m^2_{\chi^0_1}$	=	$p_{\chi_1^0}^2$	5 e	quations
$m_{ ilde{l}}^2$	=	$(p_{\chi^0_1} + p_{l_1})^2$	9 u	nknowns:
$m^2_{\chi^0_2}$	=	$(p_{\chi_1^0} + p_{l_1} + p_{l_2})^2$	٩	5 masses
$m_{ ilde{b}}^2$	=	$(p_{\chi_1^0} + p_{l_1} + p_{l_2} + p_{b_1})^2$	٩	$\chi_1^0 4$ -momentum
$m_{ ilde{g}}^2$	=	$(p_{\chi_1^0} + p_{l_1} + p_{l_2} + p_{b_1} + p_{b_2})^2$		

- The masses are the same for all the events!
- With 5 events 25 equation and 25 unknowns $(5(m) + 5 \times 4(p))$
- Use all events (not only near edge): increase statistics
- Don't need to know $m_{\chi_1^0}$

Measuring Dark Matter

- Model-dependent mSUGRA fit to all measurements (like SM at LEP)
- Scan on a grid of SUSY models, get best model by χ^2 comparison
- Deduce LSP mass and relic density $\Omega_{\chi} h^2$
- Generate many simulated experiments for all measurements and expected uncertainties

Result presented for **B**: most favourably!

- Bulk region:
 - G like B but $BR(\chi_2^0 \rightarrow \chi_1^0 ll) \approx 2.3\%$ (was 16.4%) and σ smaller (~ 8 pb vs ~ 58 pb)
 - Borderline even with final LHC statistics
 - **● ■** $\mathsf{BR}(\chi_2^0 \to \chi_1^0 \tau \tau) \sim 100\%!$
 - Need work to fully exploit τ 's final state
- Coannihilation tail
 - $\textbf{D,J,L}: \mathsf{BR}(\chi^0_2 \to \chi^0_1 \tau \tau) \sim 100\%$
 - **A,C,H** : similar to **B** but $10 \div 100 \times \int \mathcal{L}dt$
- Focus points and Rapid annihilation funnels
 - $M_{\tilde{g},\tilde{q}}$ very high
 - (Focus Points) Even heavier with with higher M_{top} ! ($M_{top} = 180 \text{ GeV D0}$)
 - Only lighter scalar Higgs h visible at LHC

Conclusion

- LHC will discover SUSY (if exist)
- Most favorable mSUGRA in Bulk region: with $\sim 100~{\rm fb^{-1}}$ sound estimate for Dark Matter
- Less favorable scenarios: need full statistics (~ 300 fb⁻¹) and more work for $\chi_1^0 \rightarrow \tau's$ decay
- Focus points, Rapid annihilation funnels: SUSY spectroscopy \sim hopeless! sparticles too heavy
- Caveat: mSUGRA model, R-parity conserved, ...

Conclusion

- LHC will discover SUSY (if exist)
- Most favorable mSUGRA in Bulk region: with $\sim 100~{\rm fb^{-1}}$ sound estimate for Dark Matter
- ▲ Less favorable scenarios: need full statistics (~ 300 fb⁻¹) and more work for $\chi_1^0 \rightarrow \tau's$ decay
- Focus points, Rapid annihilation funnels: SUSY spectroscopy \sim hopeless! sparticles too heavy
- Caveat: mSUGRA model, R-parity conserved, ...
- With a bit of luck, it could be that looking inside the largest microscope (LHC)

Conclusion

- LHC will discover SUSY (if exist)
- Most favorable mSUGRA in Bulk region: with $\sim 100~{\rm fb^{-1}}$ sound estimate for Dark Matter
- ▲ Less favorable scenarios: need full statistics (~ 300 fb⁻¹) and more work for $\chi_1^0 \rightarrow \tau's$ decay
- Focus points, Rapid annihilation funnels: SUSY spectroscopy \sim hopeless! sparticles too heavy
- Caveat: mSUGRA model, R-parity conserved, ...
- With a bit of luck, it could be that looking inside the largest microscope (LHC) we will see the Universe!

