Introducti	on
muouucu	OII

Bose–Einstein Correlation with CMS Detector at the LHC @ 900 GeV and 2.36 TeV

Stefano Lacaprara on behalf of the CMS collaboration

INFN Padova

QCD 10 15th International QCD Conference Montpellier (F), 28 June 2010

CMS Collaboration, arXiv:1005.3294; CMS-QCD-10-003; CERN-PH-EP-2010-010

Introduction	Measurement 0000	Results 000000	Conclusion	Backup
Outline				

2 Measurement

- Reference samples
- Signal cross check with PID
- 3 Results
 - Results at 900 GeV
 - Systematics
 - Comparison with previous experiment
 - Dependence on Event kinematics

Introduction	Measurement 0000	Results 000000	Conclusion	Backup
Outline				

2 Measurement

- Reference samples
- Signal cross check with PID
- 3 Results
 - Results at 900 GeV
 - Systematics
 - Comparison with previous experiment
 - Dependence on Event kinematics

Introduction	Measurement 0000	Results 000000	Conclusion	Backup
Introduction				

Bose-Einstein Correlation

- Wave-function of identical bosons produced in High–Energy Collision overlaps, Bose–Einstein statistics changes their dynamics;
- Seen as an enhancement probability for identical boson with small relative momenta.
- BEC measurements can give info about size, shape and space-time development of the emitting source
- First seen in HEP by Goldhaber *et al* in π production in 1.05 GeV *pp* annihilations (1960).
- Large number of measurements since then using different initial states: e⁺e⁻ p
 *p*p, pp, πN, ep, and ν_μN.
- Also known as Hanbury-Brown and Twiss (HTB) effect in astronomy.

		0000	000000	Conclusion	Баскир
┠	low to meası	ıre			
	Correlation is st join probability and the individu R = R(Q) ex	udied using the r of emission of a al probabilities. pressed in term o	ratio R between pair of bosons of: $Q = \sqrt{-(p_1 - p_2)}$	$R = \frac{P}{P(p)}$	(p_1,p_2) (p_1,p_2) (p_2) $-4m_{\pi}^2$

R is Q-value distribution of same charged tracks (π) normalized to distribution of a reference sample w/o BEC. $R(Q) = \frac{dN/dQ}{dN/dQ_{ref}}.$

Parametrization

 $R(Q) = C \left[1 + \lambda \Omega(Qr)\right] \cdot (1 + \delta Q).$

where $\Omega(Qr)$ represent the Fourier transform of the emission region (in static model), with effective radius r and strength λ . δ allows for long range correlation.

Introduction	Measurement	Results 000000	Conclusion	Backup
Outline				

2 Measurement

- Reference samples
- Signal cross check with PID

3 Results

- Results at 900 GeV
- Systematics
- Comparison with previous experiment
- Dependence on Event kinematics

Using 7 reference samples, widely used in literature, for measurements and systematic uncertainties estimation.

- Opposite charge pairs;
- **Opposite charge** pairs with one track \vec{p} inverted;
- **③** Same charge pairs with \vec{p} inverted;
- Same charge pairs with \vec{p} rotated in transverse plane;
- Solution Pairs of tracks from different events, chosen randomly;
- Pairs of tracks from different events with similar $dN_{tracks}/d\eta$;
- Pairs of tracks from different event with similar total invariant mass of charged tracks.

- Coulomb repulsion between same charged particles depletes the Q distribution at low Q.
- Corrected with Gamow factor:

$$W_{S}(\eta) = \frac{e^{2\pi\eta} - 1}{2\pi\eta}$$
$$W_{D}(\eta) = \frac{1 - e^{-2\pi\eta}}{2\pi\eta}$$
$$\eta = \frac{\alpha_{em} m_{\pi}}{Q}$$

- Tested with opposite-charge
 Q-distribution normalized to MC (no coulomb effect simulated)
- Up: opposite charge Q distribution with Gamow factor superimposed (not fitted)
- Bottom: same after applying Coulomb correction

- Q distribution for signal and one reference sample
- Enhancement at low-Q show the expected correlation
- MonteCarlo (w/o BEC simulation) is flat

- Opposite charge distribution show structure due to resonances (ρ)
- Long range correlation well described by simulation

Use Double Ratio for measurement.

$$\mathcal{R} = R/R_{\text{MC}} = \left(\frac{dN/dQ}{dN/dQ_{\text{ref}}}\right) / \left(\frac{dN/dQ_{\text{MC}}}{dN/dQ_{\text{MC},\text{ref}}}\right)$$

- As check of signal, construct two samples with identical π and not-identical π , not- π particles, using PID in CMS ($\frac{dE}{dx}$ measurement with CMS silicon tracker)
- Enhancement present only in $\pi\pi$ candidates, not in π -not π

- Small π contamination in not- π
- PID works only for low $p_{\rm T}$ particles, not using π -not π as reference sample.

Introduction	Measurement 0000	Results 000000	Conclusion	Backup
Outline				

2 Measurement

- Reference samples
- Signal cross check with PID

3 Results

- Results at 900 GeV
- Systematics
- Comparison with previous experiment
- Dependence on Event kinematics

Exponential form for $\Omega(Qr) = e^{-Qr}$ fit much better data then the widely used Gaussian one $\Omega(Qr) = e^{-(Qr)^2}$.

Tried also Lèvy $\Omega(Qr) = e^{-(Qr)^{\alpha}}$ and more complex *R* function [Kozlov, Biyajima]. Gaussian form is disfavoured by data.

Introduction	Measurement 0000	Results ०००●००	Conclusion	Backup
Results and s	ystematics			

- \bullet Use spread between reference samples $\pm7\%$ for λ and $\pm12\%$ for r
- Coulomb correction syst by propagating agreement margin of opposite charge fit $\pm 2.8\%$ for λ and $\pm 0.8\%$ for r
- Compared BEC parameter at generation and reconstruction level with dedicated simulation: no bias, agreement within statistical errors.

Results at 900 GeV

 $r = 1.59 \pm 0.05 \; ({
m stat.}) \pm 0.19 \; ({
m syst.}) \; fm$ $\lambda = 0.625 \pm 0.021 \; ({
m stat.}) \pm 0.046 \; ({
m syst.})$

Results at 2.36 TeV

 $r = 1.99 \pm 0.18 \text{ (stat.)} \pm 0.24 \text{ (syst.)} \text{ fm}$

 $\lambda = 0.663 \pm 0.073$ (stat.) ± 0.048 (syst.)

- Previous experiment used Gaussian parametrization.
- First moment of exponential: 1/r, Gaussian $\frac{1}{r\sqrt{\pi}}$.
- CMS values with exponential fits scaled by $1/\sqrt{\pi}$
- Apologize for any missing past experiment!

Introduction	Measurement 0000	Results 000000	Conclusion	Backup
Outline				

2 Measurement

- Reference samples
- Signal cross check with PID
- 3 Results
 - Results at 900 GeV
 - Systematics
 - Comparison with previous experiment
 - Dependence on Event kinematics

Introduction	Measurement 0000	Results 000000	Conclusion	Backup
Conclusion				

- Bose–Einstein Correlation measured 900 GeV and 2.36 TeV with CMS detector at LHC;
 - Used many reference samples and double ratios;
 - Used combined reference sample;
 - Estimate measurement systematics;
- Exponential shape fit better than gaussian;
- Clear dependence from track multipicity;
- Measurement at 7 TeV is in progress

Introduction	Measurement 0000	Results 000000	Conclusion	Backup
Backup				

BACKUP

20 / 30

Introduction	Measurement 0000	Results 000000	Conclusion	Backup
CMS inner	r tracker			
Si Pixel surroi $ \eta < 2.5$	unded by Si strips.	Performance	es	
Pixel • 3 barrel • $2x2$ end • $\approx 1 m^2$ • $\approx 66M$ • 1440 mo	layers (<i>r</i> = 4, 7, 11 <i>cm</i>) cap disks of Si sensors channels odules	• 2-trac • differe Q > 2 • $\geq 3 h$ • $\Delta p_T/$ TEC - Endcap 9 disks (also on the other	k separation: 1 mrad ent hits on 3^{rd} pixel lay 20 MeV its for $p_{\rm T} > 100$ MeV $p_{\rm T} \approx 1 - 2\%$ @ 1 GeV	/ers
Strips		side - not shown)	Pixels	Support / Tube
• 10 barre	l layers			
● 9+3×2 e	endcap disks			
• $\approx 200 \ m$	n^2 of Si sensors	TIB Inner Barrel		
• $\approx 6.4M$	channels	4 layers	TID Inner Disks	ø~2.4m
15148 m	nodules		3+3 disks	L~5.4m

Introduction	Measurement 0000	Results 000000	Conclusion	Backup
Events and	track selectio	ns		

- data collected in December 2009 $\sqrt{s}=$ 0.9 and 2.36 TeV.
- Trigger: MinimumBias. Activity in both Beam Scintillator Counters
- NDoF > 5;
- $\chi^2/NDoF < 5;$
- Trasverse impact parameter $d_{xy} < 1.5 mm$;
- Innermost hit R < 20 cm impact point;
- |η| < 2.4;
- $p_{\mathrm{T}} > 200$ MeV;
- $2 \le N_{trk} \le 150$
- @ 900 GeV: 270 472 events and 2 903 754 track pairs;
- @ 2.36 TeV: 13 548 events and 188 140 track pairs.

Introduction	Measurement 0000	Results 000000	Conclusion	Backup
Detailed resul	ts @ 900 GeV			

Results of fits to 0.9 TeV data							
Reference sample	P-value	С	λ	r (fm)	δ (GeV ⁻¹)		
Opposite charges	2.19×10^{-1}	0.988 ± 0.003	0.557 ± 0.025	1.46 ± 0.06	$(-3.5 \pm 2.4) \times 10^{-3}$		
Opposite hem. same ch.	7.30×10^{-2}	0.978 ± 0.003	0.633 ± 0.027	1.50 ± 0.06	$(1.1 \pm 0.2) \times 10^{-2}$		
Opposite hem. opp. ch.	1.19×10^{-1}	0.975 ± 0.003	0.591 ± 0.025	1.42 ± 0.06	$(1.3 \pm 0.2) \times 10^{-2}$		
Rotated	2.42×10^{-4}	0.929 ± 0.003	0.677 ± 0.022	1.29 ± 0.04	$(5.8 \pm 0.2) \times 10^{-2}$		
Mixed evts. (random)	1.90×10^{-2}	1.014 ± 0.002	0.621 ± 0.038	1.85 ± 0.09	$(-2.0 \pm 0.2) \times 10^{-2}$		
Mixed evts. (same mult.)	1.22×10^{-1}	0.981 ± 0.002	0.664 ± 0.030	1.72 ± 0.06	$(1.1 \pm 0.2) \times 10^{-2}$		
Mixed evts. (same mass)	1.70×10^{-2}	0.976 ± 0.002	0.600 ± 0.030	1.59 ± 0.06	$(1.4 \pm 0.2) \times 10^{-2}$		
Combined sample	2.92×10^{-2}	0.984 ± 0.002	0.625 ± 0.021	1.59 ± 0.05	$(8.2 \pm 0.2) \times 10^{-3}$		

Results of fits to 0.9 TeV data							
Multiplicity range	P-value	С	λ	r (fm)	δ (GeV ⁻¹)		
2 - 9	$9.7 imes 10^{-1}$	0.90 ± 0.01	0.89 ± 0.05	1.00 ± 0.07 (stat.) ± 0.05 (syst.)	$(7.2 \pm 1.2) \times 10^{-2}$		
10 - 14	3.8×10^{-1}	0.97 ± 0.01	0.64 ± 0.04	1.28 ± 0.08 (stat.) ± 0.09 (syst.)	$(1.8 \pm 0.5) \times 10^{-2}$		
15 - 19	2.7×10^{-1}	0.96 ± 0.01	0.60 ± 0.04	1.40 ± 0.10 (stat.) ± 0.05 (syst.)	$(2.8 \pm 0.5) \times 10^{-2}$		
20 - 29	2.4×10^{-1}	0.99 ± 0.01	0.59 ± 0.05	1.98 ± 0.14 (stat.) ± 0.45 (syst.)	$(1.3 \pm 0.3) imes 10^{-2}$		
30 - 79	2.8×10^{-1}	1.00 ± 0.01	0.69 ± 0.09	2.76 ± 0.25 (stat.) ± 0.44 (syst.)	$(1.0 \pm 0.3) \times 10^{-2}$		

Introduction	Measurement 0000	Results 000000	Conclusion	Backup
Detailed r	esults @ 2 36 Te	_\/		

Results of fits to 2.36 TeV data							
Reference sample	P-value	С	λ	r (fm)	δ (GeV ⁻¹)		
Opposite charges	5.71×10^{-1}	1.004 ± 0.008	0.529 ± 0.081	1.65 ± 0.23	$(-1.57 \pm 0.58) \times 10^{-2}$		
Opposite hem. same ch.	$4.19 imes 10^{-1}$	0.977 ± 0.006	0.678 ± 0.110	1.95 ± 0.24	$(1.49 \pm 0.48) \times 10^{-2}$		
Opposite hem. opp. ch.	4.61×10^{-1}	0.969 ± 0.005	0.700 ± 0.107	2.02 ± 0.23	$(2.36 \pm 0.47) \times 10^{-2}$		
Rotated	4.24×10^{-1}	0.933 ± 0.007	0.610 ± 0.070	1.49 ± 0.15	$(5.75 \pm 0.59) \times 10^{-2}$		
Mixed evts. (random)	2.26×10^{-1}	1.041 ± 0.005	0.743 ± 0.154	2.78 ± 0.36	$(-4.02 \pm 0.41) \times 10^{-2}$		
Mixed evts. (same mult.)	3.52×10^{-1}	0.974 ± 0.005	0.626 ± 0.096	2.01 ± 0.23	$(2.03 \pm 0.46) \times 10^{-2}$		
Mixed evts. (same mass)	7.31×10^{-1}	0.964 ± 0.005	0.728 ± 0.107	2.18 ± 0.23	$(2.84 \pm 0.46) \times 10^{-2}$		
Combined sample	8.90×10^{-1}	0.981 ± 0.005	0.663 ± 0.073	1.99 ± 0.18	$(1.31 \pm 0.41) \times 10^{-2}$		

Results	Results of fits to 2.36 TeV data					
2 - 19	0.65 ± 0.08	1.19 ± 0.17 (stat.)				
20 - 60	0.85 ± 0.17	2.38 ± 0.38 (stat.)				
Results	Results of fits to 0.9 TeV data					
Multiplicity range	λ	<i>r</i> (fm)				
2 - 19	0.65 ± 0.02	1.25 ± 0.05 (stat.)				
20 - 60	$\textbf{0.63} \pm \textbf{0.05}$	$2.27\pm0.12~(\text{stat.})$				

Introduction	Measurement 0000	Results 000000	Conclusion	Backup
Correlation co	efficient of exp	onential fit		

Table: Correlation coefficients for the fit parameters obtained with the combined reference samples. Left: coefficients from the fit to 0.9 TeV data; right: coefficients from the fit to 2.36 TeV data.

		0.9 TeV				2.36 TeV		
	С	λ	r	δ	С	λ	r	δ
С	1				1			
λ	0.33	1			0.27	1		
r	0.72	0.82	1		0.62	0.83	1	
δ	-0.97	-0.30	-0.67	1	-0.96	-0.24	-0.57	1

- Dedicated MonteCarlo simulation with BEC enabled
- Pythia, exponential shape MSTJ(51)=1, PARJ(92)=0.9, PARJ(93)=0.125
- Performed analysis at Generated (left) and Reconstruction (right) level
- found no bias within the statistical uncertainties

Two particles

- from source A, momentum p₁
- 2 from source B, momentum p_2

System wave-function

$$\begin{split} \Psi_A(1) &= f_A e^{-i\vec{p}_1\vec{x}_A}, \dots \\ \text{Complete wave-function for Bosons is} \\ \Psi(1,2) &= (\Psi_A(1)\Psi_B(2) + \Psi_B(1)\Psi_A(2))/\sqrt{2} \\ \text{Joint probability is just the product of P of single particles.} \\ &< \Pi_{12} >= (f_A^2 + f_B^2 + [f_A^*f_B e^{i\vec{p}_1(x_A - \vec{x}_B)} + c.c.])(\dots e^{i\vec{p}_2(x_A - \vec{x}_B)} \dots) \\ \text{In a chaotic source } f_A^*f_B + c.c. \text{ fluctuate randomly and drop out of expectation value.} \end{split}$$

$$R = \frac{\langle \Pi_{12} \rangle}{\langle \Pi_1 \rangle \langle \Pi_2 \rangle} = \frac{|\Psi(1,2)|^2}{|\Psi(1)|^2 |\Psi(2)|^2} = 1 + 2\frac{2f_A^2 f_B^2}{(f_A^2 + f_B^2)^2} \cos(\Delta x \Delta p)$$

Introduction	000	oo	000000	Conclusion	Васкир
Previous ex	kperin	nent res	sults: table		
Experiment	source	\sqrt{s} (GeV)	r (fm)	ref. sample	
NA22 [?]	$Kp, \pi p$	250	0.800	uses q _t	
MARK II [?]	J/ψ	3.1	$0.810 \pm 0.020 \pm 0.050$	opp. sign	
	J/ψ	3.1	$0.790 \pm 0.020 \pm 0.040$	mix event	
	$\gamma\gamma$	39	$0.840 \pm 0.060 \pm 0.050$	opp. sign	
	$\gamma\gamma$	39	$1.050 \pm 0.050 \pm 0.060$	mix event	
	$q\bar{q}$	$4.1 \div 6.7$	$0.710 \pm 0.030 \pm 0.040$	opp. sign	
	$q\bar{q}$	$4.1 \div 6.7$	$0.780 \pm 0.040 \pm 0.040$	mix event	
	$q\bar{q}$	29	$0.840 \pm 0.060 \pm 0.050$	opp. sign	
	qq	29	$1.010 \pm 0.090 \pm 0.046$	mix event	
UA1 [?]	рр	$200 \div 900$	$0.729 \pm 0.031 \pm 0.029$	opp. sign	
NA27 [?]	рр	400	1.200 ± 0.030	mix event	
TASSO [?]	e ⁺ e ⁻	34	0.727 ± 0.110		
AMY [?]	e^+e^-	58	$0.730 \pm 0.047 \pm 0.053$	opp. sign	
	e^+e^-	58	$0.582 \pm 0.062 \pm 0.016$	mix event	
DELPHI [?]	e^+e^-	91	$0.620 \pm 0.04 \pm 0.20$	opp. sign + mix event	
OPAL [?]	e^+e^-	91	$1.002 \pm 0.016^{+0.023}_{-0.096}$	opp. sign	
L3 [?]	e^+e^-	91	$0.435 \pm 0.010 \pm 0.010$	π^{\pm} MonteCarlo	
	e^+e^-	91	$0.309 \pm 0.074 \pm 0.070$	π^0 MonteCarlo	
ALEPH [?]	e^+e^-	91	0.529 ± 0.005	mix event	
ALEPH [?]	e^+e^-	91	0.777 ± 0.005	opp. sign	
H1 [?]	ер	230	$0.680 \pm 0.040^{+0.020}_{-0.050}$		
ZEUS [?]	ер	230	$0.671 \pm 0.016 \pm 0.030$	opp. sign	
BEBC [?]	$\nu_{\mu}N$	10	$0.800 \pm 0.040 \pm 0.160$		
EMC [?]	μp	23	0.840 ± 0.030	opp. sign	
	μp	23	0.460 ± 0.030	mix event	
E665 [?]	μN	30	0.39 ± 0.02	mix event	CMS/
BBCNC[?]	μN	> 10	$0.68 \pm 0.04^{+0.020}_{-0.050}$	opp. sign	
	μN	> 10	$0.54 \pm 0.03^{+0.030}_{-0.020}$	mix event	
NOMAD [?]	$ u_{\mu}N$	8	$1.010 \pm 0.05^{+0.09}_{-0.06}$	opp. sign $+$ mix event	28 / 30

 Introduction
 Measurement 0000
 Results 000000
 Conclusion
 Backup

 Bibliography:
 theory and review
 Environment
 Environment

- G. Alexander, "Bose–Einstein and Fermi–Dirac interferometry in particle physics", Rep. Prog. Phys 66 (2003) 481.
- W. Kittel and E.A. De Wolf, "Soft Multihadron Dynamics". World Scientific, Singapore 2005.
- M. Gyulassy, S. K. Kaufmann, and L. W. Wilson, "Pion interferometry of nuclear collisions. I. Theory", Phys. Rev. C 20 (1979) 2267.
- G.A. Kozlov, O. Utyuzh, G. Wilk, and Z. Wlodarczyk, "Some forgotten features of Bose–Einstein Correlations", Phys. Atom. Nucl. 71 (2008) 1502-1504.
- G.A. Kozlov, L. Lovas, S. Tokar, Yu.A. Boudagov and A.N. Sissakian, "Bose–Einstein correlations at LEP and Tevatron energies", Rev. Mod. Phys. hep-ph/0510027.
- M. Biyajima et al., Prog. Theor. Phys. 84 (1990) 931-940.
 Prog. Theor. Phys. 88 (1992) 157-158.

Introduction	Measurement 0000	Results 000000	Conclusion	Backup
Bibliography:	experiment			

- Goldhaber et al., Phys. Rev. 120 (1960) 300.
- MARKII Collaboration, Phys. Rev. D39 (1989) 1.
- TASSO Collaboration, Z. Phys. C30 (1986) 355.
- ALEPH Collaboration, Eur. Phys. J. C36 (2004) 147.
- DELPHI Collaboration, Phys. Lett. B286 (1992) 201.
- L3 Collaboration, Phys. Lett. B524 (2002) 55.
- OPAL Collaboration, Phys. Lett. B559 (2003) 131.
- UA1 Collaboration, Phys. Lett. B226 (1989) 410.
- NA27 Collaboration, Z. Phys. C54 (1992) 21.
- NA22 Collaboration, Z. Phys. C37 (1988) 347.
- ZEUS Collaboration, Acta Phys. Polon. B33 (2002) 3281.
- NOMAD Collaboration, Nucl. Phys. B686 (2004) 3.
- CMS Collaboration, CMS PAS, arXiv:1005.3294 ; CMS-QCD-10-003 ; CERN-PH-EP-2010-010

