

Primo workshop italiano sulla fisica di ATLAS e CMS

Pisa, Scuola Normal Superiore, 10 giugno 2003

Ricostruzione e identificazione di muoni in ATLAS e CMS

Stefano Lacaprara, *Stefania Spagnolo*

Stefano.Lacaprara@pd.infn.it, Stefania.Spagnolo@le.infn.it

INFN and Padova University, INFN Lecce

- ATLAS e CMS
 - Sistema magnetico,
 - \square Risoluzione p_t ,
 - Layout spettrometri
 - Rivelatori,
 - Allineamento e calibrazione
 - Trigger,
- Ricostruzione
- Performances
- Conclusioni

I Toroidi di ATLAS

- 1 toroide per il barrel BT ($\eta < 1$) 8 bobine
 - Lunghezza 26m
 - Raggi interno/esterno 9.5m/20m
 - Bending power $\int BdI = 2 6 Tm$
 - 1 Criostato/bobina

2 toroidi per gli endcaps ECT (η>1.4) 8 bobine ciascuno

- Collocati alle due estremità all'interno del BT, bobine ruotate di 22.5° rispetto al BT
- Lunghezza 5m
- Raggi interno/esterno 1.7m/10.7m
- Bending power $\int BdI = 4 8 Tm$
- Singolo criostato per ciascun ECT

Curvatura nel piano r-z Sovrapposizione dei campi nella regione 1<η<1.4

I Toroidi di ATLAS

CMS: sistema magnetico

- Solenoide centrale, B = 4 T, $l \approx 14 m$, r = 3 m,
- \checkmark campo di ritorno nel ferro del giogo $B \sim 2 T$,
- $\int Bdl \sim 12 \ Tm$ all'interno del solenoide $|\eta| < 1.45$, poi decresce (~ 4 Tm a $\eta \sim 2.4$)

Stefano Lacaprara, Stefania Spagnolo – Primo workshop italiano sulla fisica di ATLAS e CMS, Pisa, Scuola Normal Superiore, 10 giugno 2003 – Muoni in ATLAS e CMS – p.5/56

CMS: sistema magnetico

- Solenoide centrale, B = 4 T, $l \approx 14 m$, r = 3 m,
- \checkmark campo di ritorno nel ferro del giogo $B \sim 2 T$,
- ∫ $Bdl \sim 12 \ Tm$ all'interno del solenoide $|\eta| < 1.45$, poi decresce (~ 4 Tm a η ~ 2.4)
- $\int Bdl \sim 3 Tm$ fuori del solenoide nel barrel, ~ 1.6 ÷ .6 nell'endcap,
- possibile misura indipendente dentro e fuori magnete.

Stefano Lacaprara, Stefania Spagnolo – Primo workshop italiano sulla fisica di ATLAS e CMS, Pisa, Scuola Normal Superiore, 10 giugno 2003 – Muoni in ATLAS e CMS – p.5/56

CMS: Risoluzione p_t

- grande bending power, necessaria risoluzione relativamente poco spinta
- molto materiale nello spettrometro: multiple scattering dominante per σ_{p_t} basso p,
- energy loss, showering, ΔB , allineamento
- σ_{p_t} migliore con uso TRK fino $\mathcal{O}(100 \ GeV)$

Lo spettrometro di ATLAS

L'organizzazione dei rivelatori in ϕ segue la periodicità dei toroidi -> otto settori "Large" e "Small"

GOAL Tracciamento di muoni di p_T tra 6 GeV e 1 TeV fino a η <2.7 risoluzione pochi % fino a 100 GeV, 10% a 1TeV Trigger di muoni con p_T > 6 GeV fino a η <2.4

Lo spettrometro nella fase iniziale di run

Spettrometro di CMS

- risoluzione $\sigma_{R\phi} \sim 100 \ \mu m$,
- \checkmark risoluzione $\sigma_t \sim 5 \ ns$ per bx ass.,
- Barrel
 - $\ensuremath{\,{\scriptstyle {\scriptstyle \bullet}}}$ $\ensuremath{\,{\scriptstyle {\scriptstyle {\scriptstyle {\scriptstyle \bullet}}}}}$ $\ensuremath{\,{\scriptstyle {\scriptstyle {\scriptstyle {\scriptstyle \bullet}}}}}$, $R(\mu) \lesssim 1~Hz/cm^2$, $(n,\gamma) \sim 0$
 - **Drift Tubes** $\sigma_x \approx 200 \ \mu m/layer$,
- Endcap
 - $\ \ \, {\vec B} \neq 0, \, R(\mu) \lesssim 10 \; kHz/cm^2, \, (n,\gamma) \sim 10 \; kHz/cm^2$
 - Cathod Strips Chambers $\sigma_x \approx 100 \div 240 \ \mu m/layer$,
- Trigger
 - Resistive Plate Chambers: $\sigma_t \lesssim 2 ns$
 - (DT+CSC)+RPC

4 stazioni DT's, entro return yoke $|\eta| \lesssim 1.2$: 3 × 4 layers di tubi a drift (2 $r - \phi$, 1 r - z)

4 stazioni DT's, entro return yoke $|\eta| \lesssim 1.2$: 3×4 layers di tubi a drift (2 $r - \phi$, 1 r - z) 4 stazioni CSC inframezzate dai dischi iron yoke, 6 layers ciascuna, $|\eta| <$

2.4,

● 6/4 (Barrel/Endcap) stazioni di RPC fino $|\eta| < 2.1$,

- 4 stazioni DT's, entro return yoke |η| ≤ 1.2: 3 × 4 layers di tubi a drift (2 r − φ, 1 r − z)
 4 stazioni CSC inframezzate dai dis
 - chi iron yoke, 6 layers ciascuna, $|\eta| < 2.4$,
- 6/4 (Barrel/Endcap) stazioni di RPC fino $|\eta| < 2.1$,
- L1 trigger fino $|\eta| < 2.1$
- Start-up staged detector: no ME4 e RPC $|\eta| < 1.6$

Contributi alla risoluzione in p_T

Items cruciali

Risoluzione spaziale e calibrazione MDT Allineamento

La richiesta più stringente:

 $\Delta p_T/p_T = 0.1 \text{ per } p_T = 1 \text{TeV}$ $p_T = 1 \text{TeV} \rightarrow \text{sagitta 500} \mu\text{m};$ $\Delta s = 50 \mu\text{m}$

Goal raggiungibile con

- Risoluzione spaziale ~80μm
- posizione del filo nota entro 20µm
- Allineamento controllato entro 30-40µm (barrel - endcaps)

Barrel 12 Contribution to resolution (%) Tube resolution and autocalibration 11 Chamber alignment 10 Multiple scattering ○ Energy loss fluctuations 9 8 |η| < 1.5 7 6 5 4 3 2 0 10² 10

noti campo magnetico e di dE/dx nei calorimetri

Risoluzione spaziale: MDT

R-t non lineare accuratamente calibrata

- \Rightarrow vs B (non uniforme lungo ϕ)
- \Rightarrow vs T (Δ Tmax ~2.65ns/K)
- \Rightarrow vs % di CO₂ (Tmax ~83ns/%CO₂)

Ar(93%)CO₂(7%) a P=3bar (ageing safe!) HV 3080V, soglia 25 e-

Massimo tempo di drift ~800ns Guadagno $2x10^4$ Risoluzione spaziale media $80\mu m$ x 6(o 8) misure \Rightarrow ~50 μm e ~0.3mrad per stazione

ATLAS

Caratteristiche principali di RPC/TGC/CSC ATLAS

- campo \vec{E} ottimizzato per linearità,
- Gas mixture: $Ar CO_2 85 15\%$, pressione atmosferica,
- Risoluzione cella $\sigma_x \sim 180 \ \mu m$,
- Self-trigger: identificazione bx tramite mean-timer grazie a 4 piani spostati di 1/2 cella: $\sigma_t \sim 4 ns$
- Allineamento dei layer e superlayer entro $\mathcal{O}(10 \ \mu m)$

Cathode Strip Chambers

- Camere multi-wire,
- misura coordinata bending con interpolazione carica depositata su strip adiacenti $\sigma \sim 100 \div 240 \mu m$,
- lettura gruppi fili per coordinata radiale $\sigma \sim cm$,
- Gas mixture: $Ar CO_2 CF_4 \ 30 50 20\%$ (no H!),
- $\sigma_t \sim 4 \ ns$ con ricostruzione segmento multi layer

Procedure di calibrazione globale

Risoluzione in momento e calibrazione assoluta dipendono da

- allineamento degli MDT
- conoscenza del campo magnetico
- conoscenza della perdita di energia nei calorimetri

Allineamento: run speciali con il campo toroidale spento e campo solenoidale acceso ⇔ campione di tracce rettilinee di momento misurato in ID consente di allineare rapidamente lo spettrometro entro 30µm

Campo magnetico: inizialmente misurato con 5000 sonde Hall
⇒ precisione relativa 0.1%
Z → μ⁺μ⁻: 30k eventi al giorno a bassa luminosità
⇒ calibrazione della scala di momento dal fit del picco della Z
Limite del metodo: perdita di energia nel calorimetro richiede una correzione grande (ΔE≈3GeV) e dipendente dal momento
⇒ Occorre fittare il campo magnetico e insieme dE/dx
la richiesta più stringente proviene da
ΔM_W ~20MeV con 10fb⁻¹⇒ Incertezza finale su B ~0.02 % richiede pari precisione su B del solenoide e <Eloss> nota ~ 10MeV

CMS Allineamento

- ▶ camere $\mu \sigma_{r\phi} \sim 100 \ \mu m$, \longrightarrow allineamento,
- allineamento con inner tracker critico per muoni $p_t \gtrsim 100 \ GeV$
- sistema di allineamento: strutture rigide (fibra carbonio), camere CCD, LED, laser
- Forze magnetiche intense: movimento $B_{on}/B_{off} O(cm)$
- Possibile usare $p_{\mu}^{t} > 50 \; GeV$: Rate: $0.2 \div 1 \; Hz \; \mu$ /settore
- \bullet necessaria buona conoscenza \vec{B} o alta statistica

Logica di trigger

risoluzione temporale ~1.5ns Granularità di readout ~30mm

Efficienza 99% per gate temporale di 25ns Granularità di readout 20mm (fili) 30mm (strip)

Robustezza del trigger garantita dalla possibiltà di riprogrammare la logica delle coincidenze a seconda delle condizioni di fondo

Trigger di muoni

LVL1 goal: Rate da 40 MHz(*20 interazioni primarie) a 75 kHz; latenza 2µs output:

Definizione della RoI (input per il LVL2) e molteplicità di **m** per 6 soglie in p_T per bunch crossing risoluzione in $p_T \sim 20-30\%$ RoI \rightarrow Region of Interest

ATLAS

implementazione:

- Matrici di Coincidenza ricercano pattern di hits in tempo nei vari layers corrispondenti a tracce provenienti dal punto di interazione (la finestra $\Delta\eta x\Delta\phi$ di coincidenza fissa la soglia in p_T)

Robustezza e flessibilità del trigger

Altri contributi al rate del Livello 1

μ , π di impulso ~100 MeV

⇒ prodotti da decadimenti di K neutri negli sciami

⇒ rate « rate di e- Compton di bassa energia

≈ rate di μ da decadimento in volo di K/ π nei jet

 \Rightarrow incertezze sulla s di interazione dei K \circledast incertezze sui rate

p di impulso ~400 MeV da interazioni di n

 \rightleftharpoons rate atteso 1.5-3 x rate di μ da decadimento in volo di K/ π nei jet

⇒ pattern di hit correlati possono simulare il segnale di muoni prompt

Schemi di trigger previsti per ridurre il rate da fondo correlato (implementabili con la logica riprogrammabile a disposizione)

barrel

- schema low p_T + hit di conferma in RPC3
- schema low p_T + deposito di energia compatibile con μ nel layer più esterno del Tile Calorimeter

endcap

- schema low p_T + hit di conferma in TGC1
- schema low p_T + hit compatibili nella stazione TGC più interna

perdita di efficienza per p_T>6GeV trascurabile

rate da fondo correlato trascurabile

DT

Mean timer su SuperLayer: id bx e ricostruzione segmento

DT

- Mean timer su SuperLayer: id bx e ricostruzione segmento
 - associazione segmenti due SL

CSC

- identificazione bx via coincidenza multi layer,
- ricostruzione di Local Charged Track nelle due proiezioni
- segnazione ϕ , η , p_t via LUT: lavora in 3D (\vec{B} anche radiale!)

RPC

- precisa identificazione bx,
- match hit con patterns predefinit per assegnare ϕ , η , p_t

- id μ , misura ϕ , η , p_t , assegnazione bx;
- Usa hit DT, CSC, RPC;
- ricostruzione locale DT e $CSC \rightarrow$ "Track segments";
- ricostruzione regionale e assegnazione parametri $p_t \phi, \eta$;
- output 4μ piú energetici;
- non applica soglia, ma decisione presa da Global Trigger (con Calo Trigger output).

Strategia di tracciamento algoritmi offline ATLAS

→ Identificazione di una regione di attività

procedura guidata dagli hit $\phi x\eta$ nelle camere di trigger

- Ricostruzione locale di segmenti rettilinei nel piano di curvatura con hits MDT
- Combinazione di segmenti compatibili definizione delle tracce candidate

➡ <u>Fit</u>

nel campo magnetico, tenendo conto di scattering multiplo e perdita di energia nei materiali del MS

→ Propagazione al punto di interazione

conoscenza dettagliata della natura e della quantità di materiale attraversato; dE/dx e angoli di scattering inclusi nel fit

Combinazione tracce in MS e Inner Detector fit globale o associazione su base statistica

Software di ricostruzione Muonbox – raffinato, affidabile, ottimizzato Moore/MuID – in evoluzione, 00, veloce strategia simile risultati confrontabili * * * * **

Performances su μ singoli no background

μ di basso impulso

 μ di p_T=5 GeV perdono nei calorimetri da 2 a 4 GeV a seconda di η

no background

Performances in presenza di fondo

Effetto del fondo di caverna

(fattore di sicurezza 5)

 $\mathbf{A}' \mathbf{\Gamma} \mathbf{A}$

sulla ricostruzione di muoni singoli

- aumento della molteplicità di tracce spurie
- efficienza e risoluzione non sono deteriorate

Moore/MuID come algoritmo di HLT ATLAS

logica dell'algoritmo di ricostruzione della singola traccia invariata rispetto all'ambiente offline

- chiamato dallo *Step Controller* del software di *steering* del Filtro invece che dell' *event manager* offline
- non effettua, in generale, la ricerca di muoni nell'evento ma processa un seed
 - conferma o rigetta un *Trigger Element* (TE) generato dal trigger di secondo livello
 - accede a una frazione dell'evento scelta dal meccanismo del Region Selector sulla base del seed
- usa le sequenze di trigger
 - produce nuovi TE dai TE di input
- usa le configuration signatures
 - collezioni di TEs richiesti dal menu del trigger da confermare
- può essere eseguito N volte per evento

Moore/Muld – Test preliminari sui tempi di esecuzione

Ρ _τ	20 GeV TDR	20 GeV DC1	300 GeV TDR	200 GeV DC1	$\begin{array}{c} H \rightarrow \ 4 \ \mu \\ DC1 \end{array}$
tempo di	142 msec	155 msec	368 msec	279 msec	572 msec

Ricostruzione nello spettrometro - Moore

Propagazione al beam spot MuID dei muoni ricostruiti nello spettrometro (Moore)

tempi di esecuzione su PIII, 800 MHz, 256MByte (stime conservative

- accesso all'evento incluso
- seeding non ancora applicato
 goal <1s su processori da 1GHz)

P _T /GeV	Time /ms
20	5.1
100	6.3
300	4.9
$H{ ightarrow}4\mu$	25.2
m _H = 130 GeV	25.2

HLT Technical Design Report in preparazione

CMS HLT

- In CMS High Level Trigger implementato su farm di processori commerciali (Filter Unit) usando algoritmi software sui raw data,
 - Software sarà il più possibile simile a off-line
 - no uso completo calibrazioni, allineamento, ...
- Necessità di software robusto e alta qualitá
 - Uso di framework comune
 - Object-oriented Reconstruction for CMS Analisys: ORCA
- Principio base: ricostruzione regionale
 - serve seme per input: HLT usa output L1
- Prototipo dell'intera catena di ricostruzione e selezione descritto in DAQ & HLT TDR, CERN/LHCC 2002/26, 15 december 2002

seme da output L1

- seme da output L1
- Ricerca rivelatori compatibili con seme,

- *seme* da output L1
- Ricerca rivelatori compatibili con seme,
- ricostruzione locale solo su rivelatori compatibili

- seme da output L1
- Ricerca rivelatori compatibili con seme,
- ricostruzione locale solo su rivelatori compatibili
- Kalman filter, taglio χ^2 su hit,
- propagazione stato attraverso Fe con B non uniforme: CPU time consuming!
- Fit traccia dopo estrapolazione al I.P. nominale

- Inclusione Tracker hits:
- Uso μ L2 come seme per ricostruzione nel tracker

- Inclusione Tracker hits:
- Uso μ L2 come seme per ricostruzione nel tracker
- definisco cono nel tracker,

- Inclusione Tracker hits:
- Uso μ L2 come seme per ricostruzione nel tracker
- definisco cono nel tracker,
- creazione di uon o più semi da coppie di hit nel cono

- Inclusione Tracker hits:
- Uso μ L2 come seme per ricostruzione nel tracker
- definisco cono nel tracker,
- creazione di uon o più semi da coppie di hit nel cono
- costruisco traiettoria inside-out, kalman filter
- uso tracker e muon hits per fit conclusivo,

CMS CPU time

	mean CPU time	(ms/event)	mean CPU time	(ms/event)
algoritmo	Low Lumi	$p_t > 10 \ GeV$	High Lumi	$p_t > 18 GeV$
	lotale	SENZA GEANE	luiale	SENZA GEANE
L2	640	100	580	100
Calo iso	100	25	90	40
L3	420	200	590	420
Pixel iso	65	65	320	320
Tk iso	190	190	370	370
Total	710	125	660	150

su INTEL PIII 1 GHz CPU

- da legge di Moore, atteso fattore $2 \times 2 \times 2$ nel 2007,
- maggior parte del tempo speso propagando stati attraverso il ferro (GEANE)
- progetto (avanzato) per rimpiazzarlo con propagatore ottimizzato e adatto alla geometria CMS: atteso grande miglioramanto

CMS efficienza L2/L3

Stefano Lacaprara, Stefania Spagnolo – Primo workshop italiano sulla fisica di ATLAS e CMS, Pisa, Scuola Normal Superiore, 10 giugno 2003 – Muoni in ATLAS e CMS – p.48/56

CALC $R(1\mu)$ Low (a) and High (b) lumi

Sommario

- sistema magnetico determina scelte e problematiche
- ATLAS
 - toroide: basso $\int Bdl$,
 - richiede risoluzione spinta,
 - critico allineamento, calibrazione monitoring,
 - \checkmark buona risoluzione p_t fino a alto η
 - \checkmark copertura fino a $|\eta| < 2.7$
- CMS
 - solenoide: alto $\int Bdl$, molto ferro
 - risoluzione ragionevole,
 - allineamento, calibrazione, monitoring non così critici
 - multiple scattering domina risoluzione bassi p_t ,
 - \square cruciale uso inner traker per risoluzione p_t
 - \checkmark copertura fino a $|\eta|<2.4$

Sommario trigger

- ATLAS
 - basato solo su RPC e TGC,
 - selezione in p_t low e high, molteplicità per 3 soglie diverse in ogni configurazione,
 - flessibilità della logica
 - \checkmark copertura fino a $|\eta|<2.4$
 - HLT in fase di consolidamento:
 - algoritmi di II livello hanno gia' dimostrato la funzionalita' e performences richieste
 - software di III livello ricostruzione offline in fase integrazione e ottimizzazione per il run nel Filtro

CMS

- 🔎 usa tutti i rivelatori, ridondanza
- \checkmark copertura fino a $|\eta| < 2.1$
- \checkmark misura p_t , grande flessibilità per selezione,
- rate dominata da feed-through: code più importanti della risoluzione
- HLT software sviluppato: ancora molto lavoro ma promettente (migliorare timing)
- possibilità grande flessibilità per selezione

Sommario ricostruzione

- Ricostruzione:
- approccio abbastanza simile:
 - ricostruzione locale di segmenti nelle camere multi-layer
 - ricostruzione delle tracce su base regionale
 - uso dei segmenti per la ricostruzione
 - uso algoritmi off-line in HLT
- ATLAS
 - ricostruzione off-line-like orientata alla fisica
 - match con inner tracker: ricostruzione separata e poi associazione
- CMS
 - ricostruzione on-line-like orientata all'HLT
 - ricostruzione μ nel tracker parte da quella nelle camere a mu

CMS: Identificazione muoni

- Identificazione grazie al materiale davanti alle stazioni a mu
- $10 \div 15 \lambda_0$ davanti alla prima stazione
- Interiore materiale $\sim 10 \div 15 \lambda_0$ davanti all'ultima stazione

CMS Match con inner tracker

- Matching con inner tracker: multiple scattering domina sempre per "trigger" p_t
- critico l'allineamento μ -system inner tracker per $p_t \gtrsim 100 \; GeV$ barrel, $p_t \gtrsim 25 \; GeV$ endcap

CMS Campo magnetico

- Campo \vec{B} dentro solenoinde semplice,
- $\Delta B/B \sim 0.1 \div 0.5\%$ non degrada risoluzione tracker,
- nel return yoke: $\Delta B/B \sim 1\%$ sufficiente,
- per matching μ -system, inner tracker, $\Delta B/B \sim 0.1\%$
- sistema di sonde Hall, eventualmente mobili, unito a simulazione 3D volumi magnetici

TOSCA computer model of the iron yoke of the magnetic system

$$\mathcal{K}$$
 $\mathcal{K} H^0 \to WW \to 2\mu 2\nu)$ vs 1μ and $2\mu t$

CMS Working point LL e HL

Lumi	$1~\mu$ thr.	di μ thr.	rate totale $(\pi K/bc\tau/W/Z)$
	L1-HLT GeV	L1-HLT GeV	Hz (~frac)
LL	14-19	3-7	29 (3.4/ <mark>8.7</mark> /14.5/2.4)
HL	20-31	5-10	55 (0.8/ <mark>2/42/7.6</mark>)

- Soglie diverse per L1 e HLT, possibiltà per trigger (HLT) più esclusivi a soglia più bassa (correlazioni, tologici, selezione $m_{\mu\mu}, \dots$)
- rate b rilevante a low lumi, può essere aumentato con trigger dedicati sotto soglia HLT
- e.g. $B_s \rightarrow J/\psi\phi$: trigger con L1 di- μ + regional tracker reco + J/ψ massa invariante ($\delta m \sim 55 \ MeV$, $\sim 30 \ MeV$ full reco) può dare $\epsilon \sim 5\%$ per segnale $\rightarrow \sim 10^5 \text{ ev/yr} (20 \ fb^{-1})$
- Rate totale dominata (sopratutto a HL) da W: per abbassare soglia bisogna rigetttarle in parte, mantenedo alta efficienza per segnali

Signal efficiency at nominal threshol

Signal	ϵ_{LL}	ϵ_{HL}
$W o \mu u$	69%	42%
$Z o \mu \mu$	92%	86%
$t\bar{t} ightarrow \mu + X$	72%	58%
$H_{120} \to WW \to 2\mu 2\nu$	87%	64%
$H_{160} \to WW \to 2\mu 2\nu$	92%	77%
$H_{150} \rightarrow ZZ^* \rightarrow 4\mu$	98%	97%
$H_{200} \rightarrow ZZ \rightarrow 4\mu$	99%	99%

- $W, Z, t\bar{t}$ efficienza relativa a eventi con almeno 1μ in $|\eta| < 2.1$,
- Eff. Higgs relative a eventi con $n_{\mu} \ge 1$ entro $|\eta| < 2.1$, e tutti entro $|\eta| < 2.4$.

Materiali e Fondo

Software di selezione di HLT

- I'intero evento è fornito dall' EventBuilder alla farm dell' EventFilter (PCs, Linux)
- Processing Applications indipendenti eseguono gli algoritmi di selezione sui nodi della farm
- Il software di selezione consiste di algoritmi offline che hanno accesso a costanti di calibrazione e di allineamento

Trigger di muoni

LVL1 goal: Rate da 40 MHz(*20 interazioni primarie) a 75 kHz; latenza 2µs output:

Definizione della RoI (input per il LVL2) e molteplicità di **m** per 6 soglie in p_T per bunch crossing risoluzione in $p_T \sim 20-30\%$ RoI \rightarrow Region of Interest

ATLAS

implementazione:

- Matrici di Coincidenza ricercano pattern di hits in tempo nei vari layers corrispondenti a tracce provenienti dal punto di interazione (la finestra $\Delta\eta x\Delta\phi$ di coincidenza fissa la soglia in p_T)
- PAD combinano le due viste e definiscono le RoI (minima RoI nel barrel $\Delta\eta x \Delta \phi$ 0.1x0.1)

La matrice di coincidenza

cablaggio delle CM dispari per un settore Large

ATLAS

low p_T

Ogni canale del <u>piano pivot</u> (RPC2) è messo in corrispondenza con un determinato numero (dipendente dalla <u>larghezza</u> <u>della finestra di</u> <u>coincidenza</u>) di canali del <u>piano di conferma</u> (RPC1 e RPC3)

Trigger di muoni

LVL2 goal: Rate a ~1 kHz; latenza <10 ms raffinare il taglio in p_T

- pattern recognition RPC/TGC/MDT nella Rol
- fit a segmenti rettilinei nelle tre stazioni MDT
 relazione r-t lineare
- calcolo della sagitta da tre punti/ compo B uniforme
- conversione sagitta in p_T / relazione lineare tra 1/s e p_T (lookup table per settore η - ϕ)

output:

risoluzione in $p_T \sim 5\%$ per $p_T < 100$ GeV rate di spurie ridotto a livello trascurabile

rate da decadimenti di π e K riducibile con il match nell' inner detector

Robustezza e flessibilità del trigger

Efficienza di trigger vs efficienza dei rivelatori di trigger

Schema di trigger per far fronte a inefficienze degli RPC (implementabili con la logica riprogrammabile a disposizione)

Configurazione di trigger L (*loose, loose-robust*) low $p_T \Rightarrow 2/4$ majority in RPC1 e RPC2 + hit in coincidenza in RPC3 per ridurre il rate di spurie high $p_T \Rightarrow low p_T$ e 1/2 majority in RPC3

RPC	low p_T eff.			high p_T eff.	
eff.	baseline	loose	loose robust	baseline	loose
9 5 %	0.99	1	0.95	0.98	1
80 %	0.82	0.92	0.85	0.79	0.88

Barre

Controllo delle posizione dei fili

1-6 metri

20 µm

Parametri meccanici dei tubi a drift Catodo cilindrico in Al spessore 400 µm diametro 50 µm Filo W-Re Lunghezza dei tubi Tolleranze meccaniche

ATLAS

un sistema ottico di monitoraggio della sagitta e delle deformazioni in piano della camera consente di:

- equalizzare la sagitta dei tubi a quella dei fili (entro 100µm);
- correggere nella ricostruzione effetti dovuti a deformazioni complessive della camera da stress meccanici e a gradienti termici (previsti fino a 1.5°C nel volume della singola camera nei casi più sfavorevoli)