Env of the follian de inisio All.

are not post purch took made and

all a matrice by deflace more mapell of minutely.

be to calling its losteries till Renotici unscaller pinter

yo tall anard construction and many allies applied a le

but the face a to manter taid manife-

venues all falls de union oufin manshi de lapsia ad manger

instanto delle name month

to mute calle

VI symposium on LHC Physics and Detectors

Fermilab, Batavia, II, U.S., may, 1^{st} 2003

CMS: Muon System and Physics performance

Stefano Lacaprara, I.N.F.N. and Padova University

on behalf of the CMS collaboration

last and and sen I contain in descarce alla

Allenered & allenerthe that A

Outline

- Introduction,
- Muon detectors,
- Muon reconstruction,
 - ♦ High Level Trigger,
 - ♦ Local reconstruction,
 - ♦ Global reconstruction,
 - ♦ Muon isolation,
- Physics performance,
- Summary

Introduction

Results presented for two LHC instantaneous luminosities:

 \diamond Low luminosity (LL) first 3 year of data taking:

$$\mathcal{L} = 2 \times 10^{33} \ cm^{-2} s^{-1} = 2 \ nb^{-1} s^{-1}$$

♦ High luminosity (HL) after:

$$\mathcal{L} = 10^{34} \ cm^{-2} s^{-1} = 10 \ nb^{-1} s^{-1}$$

- All results presented with full CMS simulation (GEANT3)
- Pile up included for both luminosities,
- OO-reconstruction ORCA (Object-oriented Reconstruction for CMS Analysis)

Muon Detectors in CMS

Muon Detectors (2)

Three type of gaseous detectors:

- Drift Tubes in barrel region,
- Cathod Strips Chambers in endcap regions,
 - \diamond DT's and CSC's provide precise position measurements, ($\rightarrow p_t^{\mu}$),
- ► Resistive Plate Chambers in both barrel and endcaps.
 - ♦ RPC provide precise bunch crossing (bx) id.
 - \diamond all the 3 sub-systems contribute to the L1-trigger.

Muon Detectors (3)

4 stations of DT's, interleaved with the iron of magnet yoke, self triggering and bx identification,

 4 stations of CSC's with same capabilities, interleaved with iron disk yoke, up to

 $|\eta| < 2.4,$

- ► 6 –Barrel– or 4 –Endcaps– station of RPC's up to $|\eta| < 2.1$,
- \blacktriangleright L1 trigger up to $|\eta| < 2.1$
- Start-up staged detector: no ME4 and RPC $|\eta| < 1.6$

Drift Tube chambers

• Made of 3 SuperLayers, 2 in $r - \phi$ and 1 in r - z (not in the 4^{th} station) separated by honey-comb spacer

- Each SL made of 4 layers of -staggered- 4.2 cm wide cells,
- *E*-field shaped to give maximum linearity,
- Gas mixture: $Ar CO_2 85 15\%$,
- Single point resolution: $\sim 200~\mu m$,
- Chamber resolution: pos $\sim~100~\mu m$, dir $\sim~1~mrad$,
- Total 250 chambers, $\sim 190~k$ wires.

Cathode Strip Chambers

- \bullet Arranged in $4~{\rm disks},$
- Inner ring have 18 CSCs each covering 20° , outer 36 covering 10° ,
- Made of 6 Layers, trapezoidal shape,
- Radial strips measure precise bending coordinate by interpolation of induced charge $\sigma \sim 100 \div 240 \mu m$,
- Orthogonal anode wires readout $\sigma \sim cm$, 3d points,
- Gas mixture: $Ar CO_2 CF_4 \ 30 50 20\%$,
- $\bullet\,$ Total 540 chambers,
 - $\sim 0.5\,M$ channels.

Resistive Plate Chambers

- Double gap, single readout (strips),
- Dedicated trigger detectors,
- Fast timing response, precise identification of bx $\sigma_t \sim 1 \ ns$,
- Coarse $\sim cm$ position resolution,
- p_t^{μ} assignment via Pattern Comparator Trigger,
- Help in identification of μ tracks,
- Total 612 chambers,
 - $\sim 160 \ k$ channels.

Muon Reconstruction

Muon Reconstruction

- In CMS the High Level Trigger is performed on a commercial processor farm (Filter Unit) running software algorithm on raw data,
 - Software used will be as much as possible the same used in offline reconstruction
 - ♦ Offline reconstruction will make full use of complete calibration, alignment, etc . . .
- Robust, high quality reconstruction software
 - Use of a common framework
 - Object-oriented Reconstruction for CMS Analisys: ORCA
- Basic principle: regional reconstruction
 - Reconstruction performed in region only,
 - Need seed to start: for HLT is Level-1 trigger object
- Working prototype of full HLT reconstruction and selection already developed: DAQ & HLT TDR, CERN/LHCC 2002/26, 15 december 2002

Local Pattern Recognition

► DT's and CSC's are multi-layers detectors:

first step of muon reconstruction is local, i.e. inside chambers

Barrel

- Reconstruct $r \phi$ SL hits (time-space conversion), hit error = resolution,
- v_{drift} depends on \vec{B} field and impact angle θ , first approx.: \vec{B} @ center of wire, $\theta = 0$,
- Build segments 2D –linear fit–,
- Solve L/R ambiguity by best χ^2 criterion,
- Apply impact angle correction to hits and refit,
- Build segment in r-z SL (where present): initial θ assuming μ from I.P.,
- Associate two projections (if present) to build a 3D segment,

Local Pattern Recognition: Barrel (2)

- Apply further correction for \vec{B} , using knowledge of hit position along the wire (\vec{B} varies!) and do final refit.
- Position and direction of segment and corresponding error matrices from linear fit,
- Hits error (used in the fit) depends on $ec{B}$ and heta, apply proper corrections,
- Resolution: $\sigma_{pos} \sim 100 \ \mu m$ for bending coordinate, $\sigma_{dir} \sim 1 \ mrad$.

Local Pattern Recognition (2)

Endcap

- Reconstruct 3D hits,
- Fit ("Gatti" function) charge distribution on nearby strips to get cluster centroid,
- Use discriminated wire-group signal to get nonbending coordinate,
- Associate two projection by time coincidence,
- Fit 3D segment using 3D hits, linear fit,
- Resolution: $\sigma_{pos} \sim 100 \div 250 \mu m$ for bending coordinate, depending on chamber,

Local Pattern Recognition: Endcap(2)

- Based only on Muon detectors: DT, CSC and RPC,
- Seed generation:
 - ♦ L1-output for L2 trigger or
 - ♦ From track segments from local reconstruction,

Search of detectors compatible with seed,

- Search of detectors compatible with seed,
- Local pattern reconstruction performed only in those detectors: regional reconstruction on demand,
- Use DT 3D segments, CSC 3D hits constituents of segments, and RPC hits,

- Trajectory building inside-out to collect hits,
- ► Kalman filter technique to grow trajectory, χ^2 cuts to reject bad hits,
- State propagation across iron with non-const B field: CPU time consuming!
- ► Track fitting works outside-in,
- Extrapolation to nominal I.P. and refit

- Inclusion of inner Tracker hits:
- ► Use L2 reconstructed muons as seed for tracker reconstruction,
- Get muon state at outermost tracker surface and at interaction point,

- Inclusion of inner Tracker hits:
- ► Use L2 reconstructed muons as seed for tracker reconstruction,
- Get muon state at outermost tracker surface and at interaction point,
- Define region of interest in the tracker,

- Inclusion of inner Tracker hits:
- ► Use L2 reconstructed muons as seed for tracker reconstruction,
- Get muon state at outermost tracker surface and at interaction point,
- ► Define *region of interest* in the tracker,
- Create one or more seeds from pairs of reconstructed hits in different tracker layers,

For a given seed build trajectory:

- ♦ Building inside-out,
- ♦ Kalman filter applied,
- \diamond Uniform *B*, few material:

Trajectory cleaning and final fit:

- ♦ Solve ambiguities,
- \diamond Ghosts suppression (# hits and $\chi^2),$
- propagation is much simpler and ♦ Use tracker and muon hits for faster than in the muon system, final fit,
 - ♦ Reject bad tracks.

L1, L2, L3 efficiency vs $|\eta|$

L1, L2, L3 efficiency vs $|p_t^{\mu}|$

Muon Isolation (1)

- ▶ Based on $\sum E_t$ or $\sum p_t$ in cones around reconstructed muons,
 - \diamond Cones sizes and thresholds are optimized to get maximum rejection for minimum bias events above trigger p_t threshold for a fixed efficiency on reference signal ($W \rightarrow \mu \nu$)
 - \diamond Flat $\epsilon(\eta)$ by construction,
- Calorimeter isolation, @ L2
 - $\diamond \sum E_t$ from ECAL & HCAL towers: sensitive to PileUp,
- Pixel isolation, @ L2.5
 - $\diamond \sum p_t$ from $3-{\rm hit}$ tracks in the pixel detector,
 - \diamond Need 3 layers, no with pixel staging, problem if pixel inefficiencies,
 - \diamond Take tracks from the same vertex as $\mu,$ reduce PU ,
- ► Tracker isolation, @ L3
 - $\$ $\sum p_t$ from tracker tracks, regional reconstruction around muon,

Muon Isolation (2)

 $\epsilon_{MB} \operatorname{vs} p_t^{gen}$ for $\epsilon_W \geq 97\%$

 ϵ_{MB} vs ϵ_{W}

Physics Performance

Physics Performance (1)

Single muon rate Low (a) and High (b) lumi:

Physics Performance (2)

Contribution to single μ rate High Lumi before and after isolation:

Physics Performance (3)

Di-muon rate (symmetric p_T thr.) Low (a) and High (b) lumi:

Physics Performance (4)

Combined signal and di-muon rate Low (a) and High (b) lumi:

Physics Performance (5)

Efficiency for $W \to \mu \nu$ and $t\bar{t} \to \mu + X$:

Physics Performance (6)

Efficiency for $W \to \mu \nu$ and $Z \to \mu \mu$:

Physics Performance (7)

Efficiency for $H^0 \to WW \to 2\mu 2\nu$ vs single and di- μ thr.:

Possible Working Point at Low and High Lumi

Lumi	1μ thr.	di μ thr.	total rate ($\pi K/bc au/W/Z$)	
	L1-HLT GeV	L1-HLT GeV	Hz (\sim frac)	
LL	14-19	3-7	29 (3.4/8.7/14.5/2.4)	
HL	20-31	5-10	55 (0.8/ <mark>2</mark> /42/7.6)	

- ▶ Different threshold for L1 and HLT, room for more exclusive HLT selection at lower threshold (correlation, topological trigger, $m_{\mu\mu}$ selection, ...),
- b physics contents is relevant at low lumi, and can be enhanced with dedicated trigger below HLT threshold,
- ► e.g. $B_s \rightarrow J/\psi\phi$: trigger at L1 di- μ + regional tracker reco + J/ψ mass reconstruction ($\delta m \sim 55 \ MeV$, $\sim 30 \ MeV$ with full reco) can give $\epsilon \sim 5\%$ for signal $\rightarrow \sim 10^5 \text{ ev/yr} (20 \ fb^{-1})$
- ► total rate is dominated (especially at High Lumi) by W, to lower the threshold must reject part of these events, without losing efficiency,

Signal Efficiency at Nominal Threshold

Signal	ϵ_{LL}	ϵ_{HL}
$W o \mu u$	69%	42%
$Z ightarrow \mu \mu$	92%	86%
$t \bar{t} ightarrow \mu + X$	72%	58%
$H_{120} \to WW \to 2\mu 2\nu$	87%	64%
$H_{160} \to WW \to 2\mu 2\nu$	92%	77%
$H_{150} \rightarrow ZZ^* \rightarrow 4\mu$	98%	97%
$H_{200} \rightarrow ZZ \rightarrow 4\mu$	99%	99%

W, Z, tt̄ efficiency relative events with at least one muon in |η| < 2.1,
 Higgs efficiency relative to events with n_μ ≥ 1 within |η| < 2.1, and all within |η| < 2.4.

Summary

- CMS muon system has been designed with high redundancy for selection and reconstruction,
- High Level Trigger reconstruction already developed, will be very close to the offline reco,
- Fully exploit muon and tracker detectors to give excellent performance in term of resolution and efficiency,
- Still room for further optimization and development,
- Physics performance very promising, (eagerly) Waiting for first p - p collision!!

Backup Slide

Muon Alignment Issue

- * Rate of μ usable for alignment ($p_t > 50$ GeV from L1 trigger): $0.2 \div 1 \ Hz \ \mu$ /sector
- \star With perfect knowledge of $B-{\rm field},\sim4$ days even at Low luminosity to reach $\sim200~\mu{\rm m}$ precision,
- \star But with $\Delta B/B \sim 0.1\%$ need several months,
- \star to achieve $\sim 100~\mu{\rm m}$ precision (i.e. better than chamber resolution) years!!
- \star must have external alignment for $\sim 100~\mu{\rm m}$ precision
- ★ web of laser and optical link to align muon detectors also with inner tracker will be present in CMS
- \star in the endcaps might use halo muons, need special trigger

Muon Reconstruction Timing

	mean CPU time	(ms/event)	mean CPU time	(ms/event)
algorithm	Low Lumi total	$p_t > 10 \ GeV$ excluding GEANE	High Lumi total	$p_t > 18 \ GeV$ excluding GEANE
L2	640	100	580	100
Calo iso	100	25	90	40
L3	420	200	590	420
Pixel iso	65	65	320	320
Tk iso	190	190	370	370
Total	710	125	660	150

Average CPU time (on INTEL PIII 1 GHz) for 1 event passing previous selection,

- ▶ expect a factor $2 \times 2 \times 2$ from Moore's law in 2007,
- most of time spent in propagation in iron with GEANE,
- work in progress to replace it with a fully customizable and optimized propagator, expected major improvement.