History 000

Status report on JME-10-005

CMS MET Performance in Events Containing Electroweak Bosons from pp Collisions at $\sqrt{s} = 7$ TeV

Jim Alexander¹, Artur Apresyan², Stefano Lacaprara³

¹Cornell, ²CALTECH, ³INFN Padova

JetMet meeting CERN, 6 August 2010

 $\not E_T$ in Photon + Jet Events

Conclusion

- Basic selection
- Pile Up
- 2 $\not\in$ _T in Photon + Jet Events
 - Goal and selection
 - Results
- - q_T uncertanties
 - $W \to e \nu$
 - $W \rightarrow \mu \nu$

4 Conclusion

Introduction

Goal

Demonstrate the performance of various $\not\!\!\!E_T$ algorithms using events containing a W, Z, or high p_T photon

- The focus of this PAS is NOT to study/measure EWK bosons as such but to study MET reconstruction in those events
- Study and compare the performance of various MET algorithms in events with real MET (W), measure MET scale and resolution in events with γ/Z
- CaloMET (raw, Typel/II corrected), TcMET, PfMET

Links:

- CADI http://cms.cern.ch/iCMS/analysisadmin/cadi?ancode=JME-10-005
- HN: https://hypernews.cern.ch/HyperNews/CMS/get/JME-10-005.html
- Twiki: https://twiki.cern.ch/twiki/bin/view/CMS/EwkMetComm
- Previous Approval (indico)

 E_T in Photon + Jet Events

- pre-approval (with $\sim 12\,\text{nb}^{-1}$) on June 28
- approval on July 9th with $\sim 56\,{
 m nb}^{-1}$ NOT approved
 - While one has to congratulate all people involved for the fast production of the plots with the newly arrived data, we also saw that many questions have come up and issues need to be understood in the plots, which were not visible before.
 - more work has to go into the understanding of the new results, in particular for the gamma+jet sample.
 - ... Concentrate on the data which have been taken up to now.
 - ...it is clear that we start to see PU effects, thus certain plots should be done as a function of Nvtx ...
- Decision to skip ICHEP and concentrate on analysis for $\gamma+\textit{jet}$ and PU issues.

 $\not E_T$ in Photon + Jet Events

A Lighter PAS

Conclusion

Statistics

• Stay with "pre-ICHEP" integrated luminosity, as suggested. $\int \mathcal{L} dt \sim 200 \text{ nb}^{-1}$.

New PAS

- POSTPONED WAITING FOR MORE DATA Performance of $\not \in_T$ reconstruction in events with a Z boson
- DROP FOR THE TIME BEING

 - ▶ ∉_T significance

History 000 $\not E_T$ in Photon + Jet Events

Conclusion

Title and abstract

CMS MET Performance in Events Containing Electroweak Bosons from pp Collisions at $\sqrt{s} = 7$ TeV JME-10-005

During the spring of 2010, the LHC delivered proton-proton collisions with a centre-of-mass energy of 7 TeV. In this note, we present results of studies of missing transverse energy, as measured by the CMS detector, in events containing W bosons or isolated, high transverse momentum photons. The performance of several different MET reconstruction algorithms is compared.

Editors: Artur Apresyan, Stefano Lacaprara, Jim Alexander (senior) ARC: Fabio Cossutti (Trieste), Sharon Lee Hagopian (Florida-state), Paraskevas Sphicas [chair] (CERN) History

₽ _T in Photon + Jet Even

Conclusion

Supporting Documents

Seven supporting AN

- AN-2010/118 CMS MET Performance in Events Containing Electroweak Bosons decaying into muons from pp Collisions at $\sqrt{s} = 7$ TeV
- AN-2010/131 Type-I and Type-II CaloMET performances in 7TeV data
- AN-2010/132 MET Scale Validation with Photon + Jet Events (TTU)
- AN-2010/176 Commissioning of the missing transverse energy in $W \rightarrow \mu\nu$ events for 12 nb^{-1} with the pp center-of-mass energy of $\sqrt{s} = 7$ TeV
- AN-2010/202 Missing transverse energy performances with electroweak bosons decaying into electrons in pp collisions at $\sqrt{s} = 7$ TeV

Basic Selection and Definition

7 / 38

Uniform Selection

- Vertex requirement, datasets, trigger selections (muon and electron)
- Electron and muon IDs following the VBTF recommendations (more on this later...)
- EGamma electrons are used in the studies of PFMET, in agreement with PF POG
- ECAL/HCAL noise is cleaned in re-reco used in the analysis

Figure: Kinematics: (a) Photon-Jet events; (b) W events. (Note that the lepton direction need not be as strongly correlated with the W direction as indicated

 $\not E_T$ in Photon + Jet Events

Conclusion

PU Estimation and Treatments

- MET related variables are sensitive to PU.
- Require just one Primary Vertex.
- MOTIVATION: start with simple (no PU) events and then eventually move to events with PU (not for this PAS)
- Estimate PU distribution by PV multiplicity: 58% 1 PV

 $\bullet\,$ Contamination from 2 not resolved PV estimated with toy MC to be $\sim7\pm2\%$ (next slide)

• Get z_{pv} distribution from data: $\sigma = 6.25 \pm 0.26$ cm

- Get minimal Δz for two PV to be resolved from data: $\Delta z = 1.5 \pm 0.5$ cm
- Use Toy MC to estimate the PV = 2 contamination in PV = 1 sample: $5 7 \pm 2\%$. Negligible for PV > 2.
- scale the multi-PV distribution and subtract from the 1-vertex distribution

Jim Alexander, Artur Apresyan, Stefano Laca

Conclusion

- Basic selection
- Pile Up

Outline

- - q_T uncertanties
 - $W \to e \nu$
 - $W \rightarrow \mu \nu$

4 Conclusion

 $\not \! E_T$ in Photon + Jet Events

Goal

- cross-section larger than that of Z
- induce $\not \in_T$ by removing γ deposit in calo
- magnitude of *induced* $\not \in_T$ well known.
- trigger HLT_PHOTON10_L1R
- Photon ID based on *loose* selections (see ''Photon reconstruction and identification at $\sqrt{s} = 7 \,\text{TeV}$ ', EGM-10-005.)

Analyzed Data Sample:

 $\int \mathcal{L} dt = 198.1 \, \mathrm{nb}^{-1}$

Event selection:

- ECAL energy deposit ($\Delta R < 0.4$) $E < 4.2 + 0.004 imes q_T$.
- HCAL energy deposit ($\Delta R < 0.4$) $E < 2.2 + 0.001 imes q_T$.
- Ratio HCAL/ECAL ($\Delta R < 0.15$) R < 0.05.
- N. tracks ($\Delta R < 0.4$) $N_{trk} < 3$.
- $\Sigma_{(0.04 < \Delta R < 0.4)} p_{\mathrm{T}} < 2.0 \, \mathrm{GeV} + 0.001 imes q_T$
- $R9 > 0.9 imes E^{\gamma}$
- γ cluster major and minor 2^{nd} moments in 0.20 0.35, 0.15 0.3.
- $\eta_{width} < 0.03$
- $q_T>$ 20 and $|\eta|<$ 1.479 (Barrel)
- Only 1 Primary Vertex (No PU)
- γ supercluster not match pixel hits consistent with a track from the interaction region ($W \rightarrow e\nu$ suppression)

- not considered as background in previous approval
- strongly suppressed (\sim 98%) by pixel seeds veto

backgrounds are as shown. QCD di-jet contamination is dominated by $\pi^0 \rightarrow \gamma \gamma$ enriched jets. Still good for energy scale studies

 $\not \! E_T$ in Photon + Jet Events

INFŃ

Effect of di-jet contamination (NOT FOR PAS)

Shown response (u_{\parallel}/q_T) for MC pure $\gamma + jet$ and $\gamma + jet$ & QCD di-jet

response

Conclusion

Recoil projections along the γ axis

Parallel component used to study $\not \in_{\mathcal{T}}$ scale and resolution PAS

 $W \to e \nu$ contamination strongly suppressed by pixel seed veto

Perpendicular component used to study $\not\!\!\!E_T$ resolution due to calo nois, UE and PU PAS

- PU affect the width of distribution See later
- 1 Primary vertex to select event with no PU
- NO PileUp in MC simulation

 $\not \! E_T$ in Photon + Jet Events

Conclusion

Angular correlation

- $W \to e \nu$ is flat in $\Delta \phi$
- If not suppressed give large contribution at low $\Delta \phi$ (see previous approval talk)
- List of $Tc \not\!\!\!\!/ _T$ events with $\Delta \phi < 2$ given to expert for inspection.

higher that gluon one. Direct γ have mostly quark jet, so overcorrection is expected.

WARNING!

Jim Alexander, Artur Apresyan, **Stefano Laca**

JME-10-005

History

 E_T in Photon + Jet Events

Conclusion

INFN

Resolution for u_T vs q_T

- Resolution (RMS) u_{\parallel} and u_{\perp} , vs q_{T}
- including uncertainties from MC
- Resolution corrected for response curve
- Use of tracking information improves significantly the MET resolution

JME-10-005

18 / 38

NO significant effect due to PU

 E_T in Photon + Jet Events

Conclusion

Effect of PU on resolution

Resolution (RMS for u_{\parallel} and u_{\parallel}) as a function of q_T for events with 1 Primary Vertex and ≥ 2 PV for three different $\not\!\!\!E_{\tau}$ algos. Not for PAS Data after $W \rightarrow e\nu$ pixel veto CMS preliminary 2010 $\sqrt{s} = 7 \text{ TeV}$ CMS preliminary 2010 $\sqrt{s} = 7 \text{ TeV}$ RMS(u_|) [GeV] RMS(u) [GeV] >1PV; caloE. Type2 caloE. Type2 Ldt = 198.1nb Ldt = 198.1nb⁻¹ >1PV: tcE, >1PV: tcE, 35 35 >1PV: pfE_T ≻1PV: pf₽_T 1PV: calog_ Type2 1PV: calo∉, Type2 30 30 1PV: tcl⊈, 1PV: tcE. 1PV: pf∉_T 1PV: pf∉_⊤ 25 25 20 20 15 15 0000 10 10 5 5 ⁰ 100 q_⊤ [GeV]) 100 q_∓ [GeV] 20 40 60 80 20 40 60 80

History

- Basic selection
- Pile Up

2) $\not\in$ $_{T}$ in Photon + Jet Events

- Goal and selection
- Results

- q_T uncertanties
- $W \to e \nu$
- $W \to \mu \nu$

4 Conclusion

History 000

W q_T uncertainty

 E_T reconstruction in events with a W boson

MC uncertainties for q_T

- Use standard PYTHIA and POWHEG
- Compare the two *q_T* distribution
- Use difference between original and reweigthed as systematic error, bin per bin.
- add this to error from PU contamination, as described before

Conclusion

 $\not \in_{\mathcal{T}}$ in Photon + Jet Event

 E_{T} reconstruction in events with a W boson

W ightarrow e u selection

- Standard VBTF selection WP 80% no $\Delta\eta$ cut in endcap (EGamma prescription)
 - ▶ HLT p_T(e) > 10 GeV
 - Electron id 80% efficiency.
 - $|\eta_e| < 2.5$ excluding $1.4442 < |\eta| < 1.56$
 - η dependent isolation on ECAL, HCAL and tracks
 - No second electron $p_{\rm T} > 20 \, {
 m GeV}$
- GSF filter + supercluster $p_{\rm T}$ > 25 GeV (VTBF is > 20)
- only 1 Primary vertex
- PU contamination cleaning
- Additional cuts to enrich W
 ightarrow e
 u
 - ► ∉_T > 25 GeV
 - $M_{\rm T} > 50 \, {\rm GeV}$
- POWHEG MC used
- QCD and EWK normalization by a fit on $\not\!\!\!E_T$ shape
- $\int \mathcal{L}dt = 255 \,\mathrm{nb}^{-1}$

 $\label{eq:Reminder} \operatorname{Reminder}: \text{ changes from previous PAS:}$

- $p_{\mathrm{T}}(\mathit{ele}) > 25\,\mathrm{GeV}$ (was 20)
- NO ∉_T cut;
- 1 primary vertex and PU cleaning

History 000

 E_T reconstruction in events with a W boson

Conclusion

Recoil in W ightarrow e u events

- agreement at low u_⊥ much better due to Primary Vertex requiremend and PU cleaning
- Uncertainties at low u_{\perp} dominated by q_T ones.

- Projection along p_T(l), not q_T (unknown): correlation is good for boosted W
- Asymmetry due to strict isolation cut on W
 ightarrow e
 u
- When u_{\parallel} is positive, electron and hadronic activities are in the same hemisphere, more likely that the electron is not isolated.

$\Delta \phi$ recoil-lepton in W ightarrow e u events

Good agreement within statistical errors

History

 $\not \! E_T$ in Photon + Jet Event

Conclusion

$W ightarrow \mu u$ selection

- Standard VBTF selection
 - HLT $p_{\rm T}(\mu) > 9 \, \text{GeV HLT}_{-} Mu9$
 - Muon Global and Tracker
 - Tracker hits> 10, Pixel hits> 0; Muon hits> 0;
 - EM veto < 4 GeV; Hadronic veto < 6 GeV;</p>
 - Relative combine isolation < 0.15
 - impact parapameter (beam spot) < 2 mm</p>
 - Global fit $\chi^2 < 10$
 - ▶ |η| < 2.1</p>
- Muon *p*_T > 25
- only 1 Primary vertex
- PU contamination cleaning
- Additional cuts to enrich $\bar{W}
 ightarrow \mu
 u$
 - ▶ ∉_T > 25 GeV
 - $M_{\rm T} > 50 \, {\rm GeV}$
- QCD and EWK normalization by a fit on ${\not\!\! E}_{{\mbox{\scriptsize T}}}$ shape
- $\int \mathcal{L}dt = 246 \,\mathrm{nb}^{-1}$

 $\label{eq:Reminder} \operatorname{Reminder}: \text{ changes from previous PAS:}$

- $p_{\mathrm{T}}(\mu) > 25 \,\mathrm{GeV}$ (was 20)
- NO ∉_T cut;
- 1 primary vertex and PU cleaning

 $\not \! E_T$ in Photon + Jet Ever

 E_T reconstruction in events with a W boson

Conclusion

Recoil in $W ightarrow \mu u$ events

• Good agreement at low u_T thanks to PU contamination removal;

₽ T in Photon + Jet Events

Recoil along $q_{\mathcal{T}}$ in $W ightarrow \mu u$ events

- Small/no asymmetries as compared to $W \rightarrow e \nu$ due to softer isolation cut.
- As for W o e
 u, good correlation between $p_{
 m T}(\ell)$ and q_{T} only for boosted W

• Narrower distribution for TC and $PF \not\in_T$

 E_T reconstruction in events with a W boson

Conclusion

$\Delta \phi$ recoil-lepton in $W \rightarrow \mu \nu$ events

Good agreement between data and MC

- Very limited effect of PU on M_T and ∉_T distribution, on which the EWK analysis is based. Significant only for hadronic recoil
- Below: $\not\!\!\!E_T$ (I), $M_{\rm T}$ (c) and u_T (r) for $W \to \mu \nu$ case with ${\sf Pf} \not\!\!\!E_T$

 $\not \! E_T$ in Photon + Jet Events

Any effect of PU in EWK studies? /II

- From $\gamma + jet$ analysis, no (or negligible) effect on MET scale from the PU.
- (limited) effect on $\not\!\!\!E_T$ resolution from PU
- will be needed for analysis such as W mass measurement (not in ICHEP EWK program)

 $\not \! E_T$ in Photon + Jet Events

Conclusion

History

- Basic selection
- Pile Up

Outline

2 $\not\in_{T}$ in Photon + Jet Events

- Goal and selection
- Results

- q_T uncertanties
- $W \to e \nu$
- $W \rightarrow \mu \nu$

4 Conclusion

Conclusion

$\gamma + jet$

- Studies presented with 198.1 nb⁻¹
- Analysis updated

Conclusion

- considering W
 ightarrow e
 u contamination
- introducing further cut (pixel seeds) to effectively reduce it
- reducing PU effect by requiring just 1 Primary Vertex and multi-PV cleaning
- PU effect visible in MET resolution but NOT in response (not for PAS)
- Good agreement data-MC seen

History

 $\not \! E_T$ in Photon + Jet Event

Conclusion

W ightarrow e u and $W ightarrow \mu u$

Conclusion/II

- Studies presented with 255 and 246 nb⁻¹ respectively
- Improvement wrt previous PAS
 - More strick cuts to select purer W sample
 - Select events with just one Primary Vertex
 - clean PU contamination in 1-vertex sample
- Uncertanties included:
 - q_T spectra using PYTHIA and POWHEG
 - from PU contamination
- Good agreement data-MC seen

History

Conclusion/III

Conclusion

PAS conclusion

- The performance of three ∉_T algorithms have been examined with early data
- emphasis on the calibration scale and resolution of the $\not\!\!\!E_T$ response.
- Very good agreement between data and MC
- the improvement that results from the inclusion of charged particle tracking in jet reconstruction is visible and significant.
- The difference in performance is further confirmed in ∉_T distributions of W → ℓν event samples which contain genuine ∉_T.

BACKUP

small statistics at high $\Delta\phi$

Backup

Main W contamination is expected at 30<PT<45. Instead somewhat better DATA/MC agreement

Jim Alexander, Artur Apresyan, Stefano Laca

JME-10-005

INFN

Possible NLO vs LO effect at low q_T ?

Backup

Effect of QCD contamination on Resolution

40 60

CMS preliminary 2010

0.9

0.8

80 100

√s = 7 TeV

 0.993 ± 0.001

120 140 160

q [GeV]

u_{\parallel} Barrel vs Endcap for TcMet

Backup

Pileup effects on caloT2 recoil variables (data only,

MT distribution for $W ightarrow \mu u$

ho Muon ${m ho}_{ m T}$ distribution for $W o \mu u$

For 20 and 25 $p_{\rm T}$ cut Note: different QCD/EWK normalization for MC from MET distribution

Comparison with EWK PAS at ICHEP $M_{\rm T} W \rightarrow \mu \nu$

Left EWK PAS , Right Current analysis

• Plot NOT for current PAS!

Backup

Left EWK PAS $\not\in_{T}$, Right current work $\not\in_{T}$

- $p_{\rm T} > 25 \, {
 m GeV} \, ({
 m VTBF} \, {
 m is} > 20)$
- only 1 Primary vertex

Backup