

VI Workshop Italiano sulla Fisica p-p a LHC Acquario di Genova 8-10 Maggio 2013

RICERCHE DI HIGGS ESOTICI

Sara Diglio (ATLAS)¹, Stefano Lacaprara (CMS)²

¹The University of Melbourne ²INFN-Sezione di Padova

OUTLINE

- Neutral Higgs Boson searches
 - Two Higgs Doublet Models (2HDM)
 - Direct heavy Higgs searches
 - Fermiophobic Higgs*
 - Minimal Supersymmetric Standard Model (MSSM)
 - Next to Minimal Supersymmetric Standard Model (NMSSM)
 - Higgs to invisible

Higgs in a model with a 4th generation of fermions*

- o Hidden sector*
- Charged Higgs boson searches
 - \circ 2HDM→ MSSM : charged Higgs
 - Doubly charged Higgs
- Future Plans

NEUTRAL HIGGS BOSON SEARCHES

- A simple extension of the SM is the addition of a 2nd Higgs doublet
- It gives rise to 5 Higgs Bosons: h, H, A, H[±]
- Is the 125 GeV the lightest among the 5?
- 2HDM models are classified depending on the fermion coupling:
 - **Type I**: all quarks couple to just one of the Higgs doublets \rightarrow fermio-phobic limit
 - → fermio-phobic limit
 - **Type II**: the Q=2/3 right handed quarks couple to one Higgs doublet and the Q=-1/3 right handed quarks couple to the other

\rightarrow MSSM is a type II at tree level

$y_{2 \mathrm{HDM}}/y_{\mathrm{SM}}$	Type I	Type II
$\xi_h^{\rm v}$	$\sin(eta-lpha)$	$\sin(eta-lpha)$
ξ_h^u	$\cos \alpha / \sin \beta$	$\cos lpha / \sin eta$
ξ_h^d	$\cos \alpha / \sin \beta$	$-\sin \alpha / \sin \beta$
ξ_H^{v}	$\cos(\beta - \alpha)$	$\cos(\beta - \alpha)$
ξ^u_H	$\sin \alpha / \sin \beta$	$\sin lpha / \sin eta$
ξ^d_H	$\sin \alpha / \sin \beta$	$\cos lpha / \cos eta$

$$\begin{pmatrix} h \\ H \end{pmatrix} = \begin{pmatrix} -\sin\alpha & \cos\alpha \\ \cos\alpha & \sin\alpha \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}$$
$$\begin{pmatrix} A \\ G \end{pmatrix} = \begin{pmatrix} -\sin\beta & \cos\beta \\ \cos\beta & \sin\beta \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix}$$

Vixing angles:
$$\phi_1, \phi_2$$
: CP-even fields
 χ_1, χ_2 : CP-odd fields
tan $\beta = \frac{v_2}{v_1}$

2HDM: $H \rightarrow WW \rightarrow ev\mu v$ NEW@Moriond

• Strategy:

ntre of Excellence fo

Particle Physics at the Terascale

• Assume m_h = 125 GeV

- Direct search for the heavier neutral Higgs H between 135-300 GeV in H→WW→evµv channel
- o Boson A and H[±] assumed to be heavy \rightarrow do not affect the H xsec and BR

н

- Selections
 - 2 leptons OS and OF
 - 0 jet and 2 jet final states
- Limits
 - Final discriminant NN output trained for mH= 150, 180, 240 GeV
 - Limits for tan β = 1, 3, 6, 20

VI Workshop Italiano sulla Fisica p-p a LHC

NFN

22

ATLAS-CONF-2013-027

W/Z

q

stituto Nazionale

di Fisica Nucleare

2HDM: MSSM

INFN IStituto Nazionale di Fisica Nucleare

- Constrained 2HDM (type II)
 - $\,{\rm o}\,$ MSSM can be described by $tan\beta$ and M_A
 - $\circ~$ Coupling with down-type quarks goes with $tan^2\beta$
- Physics Processes:
 - <u>Production</u>: Higgs couplings to b-quarks enhanced by factor ~tan²β compared to SM
 - o Decay:
 - $H \rightarrow bb$ (BR ~90% for Tan $\beta > 3$)
 - $H \rightarrow \tau^+ \tau$ (BR ~10% for Tan $\beta > 3$)
 - $H \rightarrow \mu^+ \mu$ (BR ~0.04% for Tan β >3)

 MSSM Charged searches → see "Charged Higgs Boson searches" (slide 15)

MSSM: A/H/h \rightarrow $\tau^+\tau^-$

- **Selections:** 8 final states:
 - O ATLAS 4.7-4.8 fb⁻¹@7 TeV
 - 4 channels: $\tau_{lep} \tau_{had}$, $\tau_{had} \tau_{had}$, $\tau_e \tau_{\mu}$, $\mu\mu$
 - b-tagged/b-vetoed categories
 - CMS 4.9 fb⁻¹ @7 TeV+12.1 fb⁻¹ @8 TeV
 - 4 channels: $\tau_{\mu} \tau_{had}$, $\tau_{e} \tau_{had}$, $\tau_{e} \tau_{\mu}$, $\tau_{\mu} \tau_{\mu}$
 - No b-tagged/b-tagged categories
- **Limits:** final discriminant m_{TT}

٠

tituto Nazionale

di Fisica Nucleare

Clean signal with excellent mass resolution

Limits: final discriminant $m_{\mu\mu}$

S.Diglio & S.Lacaprara

2

MSSM: bb A/H/h \rightarrow bb

INFN IStituto Nazionale di Fisica Nucleare

- CMS 2.7- 4.8 fb⁻¹ @ 7 TeV
- Search for H->bb produced in association with b-quarks
 CMS-PAS-HIG-12-033
- Two approaches:

- All-hadronic \rightarrow exploit b-jet multiplicity
- Semi-leptonic \rightarrow exploit also the b \rightarrow μ
- Set upper limits on $\sigma(bb\phi) \times BR(\phi \rightarrow bb)$

Semi-leptonic

Fully hadronic

- nMSSM: add one scalar singlet to MSSM.
 3 CP-even h₁,h₂,h₃, 2 CP-odd a₁,a₂, charged H[±]
 one CP-odd boson (a₁) can be very light m_{a1}<2m_b
- Solve some problem of MSSM

 accommodates better M_h = 125 GeV
 no fine-tuning for μ-term (produced by VEV of singlet)
- Production via gg \rightarrow (h, a) through t, b triangle loop
- Channels:
 - o Neutral
 - h \rightarrow aa \rightarrow 2 μ +2 μ
 - h \rightarrow aa \rightarrow 2 γ +2 γ
 - a \rightarrow 2 μ (backup)
 - \circ Charged → see "Charged Higgs Boson searches" (slide 13)

CHARGED HIGGS BOSON SEARCHES

\circ 2HDM \rightarrow MSSM : charged Higgs

- $H^+ \rightarrow \tau^+ \nu$
- $H^+ \rightarrow cs$
- Doubly charged Higgs boson H⁺⁺

Charged Higgs searches can also offer limits on 2HDM

tan β

120

cb cs

uν

CHARGED HIGGS: $H^+ \rightarrow \tau \nu / c s$

CMS: 2.2-4.9 fb⁻¹ @ 7 TeV $H^+ \rightarrow \tau \nu$ ATLAS: 4.6 fb⁻¹ @ 7 TeV 3 final states 3 final states $B(H+ \rightarrow \tau v) = 100\%$ assumed Di-lepton $(\tau \rightarrow |vv : W \rightarrow |v)$ Semi-lepton ($\tau \rightarrow lvv$; W $\rightarrow jets$) 0 τ h+lepton (τ h + W \rightarrow lv) 0 CMS-PAS-HIG-12-052 τ h+lepton (τ h + W \rightarrow Iv) 0 Fully hadronic (τ h+W \rightarrow jets) 0 Fully hadronic (τ h+W \rightarrow jets) JHEP 1206 (2012) 039 0 $\sqrt{s} = 7 \text{ TeV} \text{ L} = 2.3 \text{ fb}^{-1} \text{ CMS}$ out on tailets 2.2 th 1 ut 4.9 th 80 ATLAS Events / 20 GeV t +iets data m_H = 120 GeV € -0.1 Data 201⁻ ₽Hţ $B(\dot{t} \rightarrow H^*b)=0.05$ ATLAS multijets (from data) τ +jets \Box True τ EWK+tt τ (from data) 10.12 Ŷ EWK+tt no-τ (simul) stat.⊕ syst. uncert. Observed CLs Data 2011 $Jet \rightarrow \tau$ misid B(t) Expected $e \rightarrow \tau$ misid ∖s = 7 TeV þ 0. <u>+</u> 16 25 Multi-iets ± 2σ τ h+jets 50 And SM + uncertainty $Ldt = 4.6 \, fb$ 20 *m_µ* = 130 GeV 15 40 10 ರ<u>o.o</u>6 $B(t \rightarrow bH^+) = 5\%$ 10 30 ഗ്ഗ് 0.04 Ldt = 4.6 fb⁻¹ 20 Data/Bkgnd 0.0 0.5 0.5 0 s = 7 TeV10-2 0.02 combined 140 150 160 0 80 50 100 150 200 250 300 350 400 90 100 110 120 130 90 100 110 120 130 140 150 160 250 100 150 200 300 m_T (GeV) m_⊤ [GeV] m_{u+} [GeV] $H^+ \rightarrow c s$ **ATLAS**: 4.7 fb⁻¹ @ 7 TeV arXiv:1302.3694 Selection 8 2500 ATLAS Single lepton trigger 0.14 Limits at 95% CL: (5 = 7 TeV: Ldt = 4.7 10⁻¹ ATLAS ······ Expected Limit (q 0.12 +H 0.12 윋 2000 At least 4 jets pT>25 GeV Expected ± 1 vs = 7 TeV Ldt = 4.7 0.1 Expected $\pm 2\sigma$ 1500 $B(H^+ \rightarrow c\overline{s}) = 100\%$ Limits ₩ 80.0 Observed Limit]0.06 ک 1000 Final discriminat di-jet mass പ്പ് 0.04 500 Limits on BR(t \rightarrow H⁺b) = 1%-5% assuming BR 0.02 $(H^+ \rightarrow cs) = 100\%$ 0 130 140 90 100 110 120 150 Dijet mass [GeV] m_{u*} [GeV]

DOUBLY CHARGED HIGGS : H^{±±}

- Minimal See-Saw Type II
 - Higgs sector extended to a triplet: $\Phi, \Phi^{\pm,} \Phi^{\pm\pm}$
 - Responsible for low neutrino masses
- Search for $\Phi^{\pm\pm}$ and Φ^{\pm} produced from W/Z
- 3 or 4 leptons in the final state
- $\Phi^{\pm\pm}$: narrow resonance
- Search for pairs of same sign leptons
- $\Phi^{\pm\pm}$ couples to left- or right-handed fermions
- Variety of models
 - Higgs Triplet
 - Little Higgs
 - Left-Right Symmetric Models

tituto Nazional

i Fisica Nucleare

DOUBLY CHARGED HIGGS : H^{±±}

INFN Istituto Nazionale di Fisica Nucleare

- **ATLAS**: 4.7 fb⁻¹ @ 7 TeV
- Final states: e[±], μ[±]

As we don't know v mass matrix, we don't know BRs Search for BR(Φ ++ \rightarrow I+I+)=100% (I=e, μ , τ)

Final State	pair prod.		combined
	ATLAS ¹	CMS	
$\mathcal{B}(\Phi^{++} \rightarrow e^+ e^+) = 100\%$	409	382	444
$\mathcal{B}(\Phi^{++} \to e^{+}\mu^{+}) = 100\%$	409	391	453
$\mathcal{B}(\Phi^{++} \to \mu^+ \mu^+) = 100\%$	398	395	459
$\mathcal{B}(\Phi^{++} \to e^+ \tau^+) = 100\%$	-	293	373
$\mathcal{B}(\Phi^{++} \to \mu^+ \tau^+) = 100\%$	-	300	375
$\mathcal{B}(\Phi^{++} \to \tau^+ \tau^+) = 100\%$	-	169	204

 $\mathcal{B}(\Phi^{\pm\pm} \rightarrow \mu^{\pm}\mu^{\pm}) = 100\%$ CMS $\sqrt{s} = 7$ TeV, $\int \mathcal{L}dt = 4.9$ fb⁻¹

• CMS: 4.9 fb⁻¹ @ 7 TeV

• Final states: $e^{\pm}\mu^{\pm}\tau^{\pm}$

CMS-PAS-HIG-12-005

S.Diglio & S.Lacaprara

FUTURE PLANS

Where theory drives both experiments...

... discussions and strategy plans ongoing within the

BSM LHC Cross Section Working Group *

a joint effort among **ATLAS**, **CMS** and *theory community* whose <u>main goals</u> are:

- Select/define **general benchmarks** for BSM searches
- Reinterpret SM searches/signatures in BSM scenarios

Plan for the future

- Complete presented analysis with full available statistics
- Investigate more generic models for Heavier Higgs partner searches :
 - neutral and charged,
 - Including H \rightarrow hh decays
 - more final states for heavy Higgs.
- Investigate further final states

- 2HDM \rightarrow (type II discussed yesterday by R.Contino)
- <u>https://twiki.cern.ch/twiki/bin/view/LHCPhysics/HiggsBSM</u>

CONCLUSIONS

• The present

• Several BSM Higgs bosons searches in ATLAS and CMS:

- Neutral
- Charged
- o No BSM/exotic Higgs observed
- o Set limits on the presented scenarios
- The Future
 - Finalize some of the presented analysis with the whole available statistic
 - Explore new final states driven by theory
 - o Approach more generic benchmark models

BACKUP

OTHER CHANNELS

SM HIGGS + REAL SINGLET

Two resonances with couplings rescaled wrt to SM

- h125 (h) coupling = C × SM
- Heavy Higgs (H) coupling= C' × SM

• Unitarization

 $C'^2 + C^2 = 1$, ie $C' = \cos\theta$, $C = \sin\theta$

 Heavy Higgs width and crosssection directly rescaled with cos²θ

$$\circ \mu_{\rm H}' = \cos^2\theta \times n_{\rm H}^{\rm SN}$$

- $\circ \Gamma_{\rm H}' = \cos^2\theta \times C_{\rm H}^{\rm SM}$
- H coupling constrained by the measured h

Signal strength (July2012):

- $\mu_{HATLAS} = 1.4 \pm 0.3$
- $\mu_{HCMS} = 0.87 \pm 0.23$

M_H and
$$\theta$$
 mixing angle

$$c_V = c_F = \sqrt{\mu}$$
 $c_V^2 + c_V'^2 = 1$

Taking the uncertainty to be Gaussian, these correspond to a 2σ lower bound on μ and hence an upper bound of C² of $\mu_{HATLAS} > 0.8 \rightarrow C^2 < 0.2$ $\mu_{HCMS} > 0.41 \rightarrow C^2 < 0.59$

SM HIGGS + REAL SINGLET (II)

What if **H** → **h h decay** (+ new unknown decays) ?

Considering H→ h h decay

(+ new unknown decays)

 \rightarrow 1 additional free parameter (BR_{new})

 Heavy Higgs search in 2 parameters space for each mH hypotesis

$$\mu' = C'^2 (1 - BR_{new})$$

$$\Gamma'_{tot} = \frac{C'^2}{(1 - BR_{new})} \Gamma_{SM}.$$

Very narrow width possible

3 free parameters: M_H , θ mixing angle, BR_{new}

Direct heavy Higgs search can be reinterpreted in this BSM scenarios as limit on mixing angle and H mass

2HDM: FERMIOPHOBIC HIGGS

INFN IStituto Nazionale di Fisica Nucleare

- Possible with extended Higgs sector (2HDM Type I)
- SM-like but no coupling to fermions

0

cle Physics at the Terasco

- - γγ enanched (no negative interference between W and t loops)
- <u>Production</u> only via VBF and VH
- no gg \rightarrow H nor ttH production
- Total yield comparable to SM at 125 GeV
- Higgs is boosted due to production mode
- additional signatures due to associate production: di-jet, lepton, MET
- LEP excluded M_{Hfp} < 108.2 GeV</p>

2HDM: FERMIOPHOBIC HIGGS

Eur. Phys. J. C (2012) 72:2157

- ATLAS: 4.9 fb⁻¹ @ 7 TeV
- $H \rightarrow \gamma \gamma$: SM-like selections
- Largest excess M_{H} =125.5 GeV 1.6 σ
- Exclusion for $110 \le M_{Hfp} \le 118$ GeV and $119.5 \le M_{Hfp} \le 121$ GeV @95% CL
- CMS: 5.1 fb⁻¹ @ 7 TeV + 5.3 fb⁻¹ @ 8 TeV
- H→ WW/ZZ

icle Physics at the Te

- $H \rightarrow \gamma \gamma$ in association with
 - o Di-jets
 - o Isolated lepton
 - Boosted Higgs
- Excess at M_H=125 GeV is the SM Higgs
 → not compatible with FB Higgs
- Exclusion for $110 \le M_{Hfp} \le 147$ GeV @95% CL

Ó

HIGGS IN STANDARD MODEL WITH 4TH GENERATION

- Standard Model with a fourth generation of fermions u₄, d₄, l₄, v₄
- 4th gen. masses not excluded by direct searches
- Large impact on production and decay rates
 - \circ σ(gg→H) enhanced
 - o VBF and VH negligible
 - BR(H→WW/ZZ) smaller
 - \circ H→γγ suppressed
 - \circ H \rightarrow fermions larger
- Need re-interpretation of SM(3) results in the context of SM4

HIDDEN SECTOR

- ATLAS: 1.9-2.04 fb⁻¹ @ 7 TeV
- Search for rare H decay into hidden-sector particles
- New particles assumed very light → decays are boosted → jet of muons/electrons with high impact parameters
- Assume
 - heavier γ_d : 400MeV, with ct~(40mm)
 - m(f_{d2})=5GeV, m(f_{d1})=2GeV
 - $\gamma_d \rightarrow \mu \mu$: 45%
- Trigger with the muon spectrometer, large IP prevent the use of inner tracker
- 2 isolated muon jets, back-to-back (Δφ>2)

- Search using the HW($\rightarrow e/\mu v$) production
- Single lepton trigger, one isolated lepton, MET>25GeV
- at least 2 electron-jets
- 3 step decay chain model also studied

S.Diglio & S.Lacaprara

NMSSM: $a \rightarrow \mu\mu$

12

- Search below and above Y resonances
- Substantial BR($a_1 \rightarrow \mu \mu$) for $2m_{\mu} < m_{a1} < 2m_{\tau}$
- Dedicated exclusive Trigger ത്ത്ത
 - 2μ , low pt, same vtx 0
 - selection in Muu 0
- CMS 1.3 fb⁻¹ @ 7 TeV
- Selection:

CMS-PAS-HIG-12-004

- \circ 2 isolated, prompt μ
- Limit:
 - $M\mu\mu \in [5.5 8.8] \cup [11.5 14] \text{ GeV excluded}$ 0

BR(a→/ tan8=1.5 $\tan\beta = 1$ 0.005 0.001 2 8 10 m_。(GeV)

 $\tan\beta = 20$

tan8=3

 $\tan \theta = 2$

ATLAS 39 pb⁻¹ @ 7 TeV

1.000

0.500

(nn 0.100

Selection:

μ

ATLAS-CONF-2011-020

- \circ 2 isolated μ coming from the same particle
- likelihood-based discriminant \bigcirc

 a_1

Search for $H+ \rightarrow \tau v$ in $tt \rightarrow bbWH+ \rightarrow bb(Iv)(\tau v)$

- ATLAS: 4.6 fb⁻¹ @ 7 TeV
- Search through violation of lepton universality in tt
- Method:
 - $R_e = N(e+\tau_{had})/N(e+\mu)$ $R_{e,SM} \sim 0.11$
 - in **tt** decays with H⁺ decays R_{MSSM} differs from R_{SM} due to enhanced H⁺ $\rightarrow \tau^+ \nu$ coupling
- Limit
 - event yield ratio $\mathbf{R}_{e+\mu} = [\mathbf{N}(e+\tau_{had})+\mathbf{N}(\mu+\tau_{had})]/[\mathbf{N}(e+\mu)+\mathbf{N}_{OR}(\mu+e)]$

- combined limits from direct searches for H⁺ →τν (all channels)
- **R**_{e,μ} limit derived with ratiomethod
- combination of limits from tt
 → bb (qq')(τ_{had} ν) and ratiomethod

CHARGED HIGGS: $H^+ \rightarrow \tau \nu - m_h^{max}$

- m_h^{max} -scenario: [hep-ph/9912223]
- parameters chosen such that maximum possible Higgs-boson mass m_h is obtained

• **M**SUSY = 1 TeV; the common soft-SUSY-breaking squark mass of the third generation

• Xt = 2MSUSY; $Xt = At -\mu = tan\beta$ is the stop mixing parameter

• $\mu = 200 \text{ GeV}$; the Higgsino mass parameter

• **M**~g = 800 GeV; the gluino mass

- M2 = 200 GeV; the SU(2)-gaugino mass
- **A**b = **A**t;

At and Ab are the stop and sbottom trilinear couplings

• The value of M_1 is xed via the unication relation $M_1 = (5/3)M_2 \sin\theta_w = \cos\theta_w$

- Large regions of parameter space excluded
- unexcluded regions still compatible with 126 GeV SM-like Higgs boson

tituto Nazional

di Fisica Nucleare

Type II: excluded region shrinks strongly with increasing tan β , since the BR to the WW final state decreases

DOUBLY CHARGED HIGGS BOSON

Dominant uncertainties:

- ±12% for WZ/ZZ cross-sections
- ±40% for non-prompt and charge flips
- Limited by the statistics at high mass

Limits depend on if the H^{±±} couples to left- or right-handed fermions

VI Workshop Italiano sulla Fisica p-p a LHC

INFN

stituto Nazionale

di Fisica Nucleare

We want to determine if the ~125 GeV Higgs-like particle (h) is fully responsible for the generation of the masses of the other SM particles

- Does h fully unitarizes the high-energy scattering amplitudes for $V_{L}V_{L} \rightarrow V_{L}V_{L}$ (V=W,Z) and $V_{L}V_{L} \rightarrow ff$?
- If h is NOT fully responsible for the unitarization of the scattering amplitudes, then additional new physics must be present to play this role
- There are BSM 'SM-like' models in which a second heavier scalar particle (H) completes the unitarization of scattering amplitudes

BSM HIGH MASS REGION

-STRATEGY-

Is a completely model independent analysis possible? → NOT enough data yet to have a model independent conclusion

Even with a few reasonable assumptions

- o spin-0 + CP-even
- o custodial W/Z symmetry
- o No FCNC

still the parameter space is large

Relations imposed by unitarity

$$\begin{array}{c} V_L V_L \to V_L V_L \\ V_L V_L \to f \bar{f} \end{array} \begin{array}{c} c_V^2 + c_V c_F \\ c_V c_F + c_V' c_F \end{array}$$

→need to consider benchmark models that...

- ... are consistent with ~125 GeV observation
- ... contain an heavy Higgs-like state
- ... compatible with EW precision data:
 - h VV couplings to be less than 15-20% deviated from the SM

Two proposed benchmarks:

- 1. SM Higgs + Real Singlet
- 2. 2HDM (Type I and Type II)

FIRST STUDIES: SM+REAL SINGLET

- Goal: reweight the heavy Higgs lineshape width by some factor $\Gamma' = (C'^2/(1-BR_{new}))*\Gamma_{SM}$ Presented by CMS
- How to devise a reasonable reweighting scheme at the BSM LHCXSWG

o Re-weighting the CPS lineshape:

Ad-hoc scaling proposed by fitting the CPS lineshape to a BW (fixed width) and scaling the fitted width by the BSM factor $(C'^2/(1-BR_{new}))$

o Scaling interference effects to the BSM case

S.Diglio & S.Lacaprara

2HDM APPROACH

- Particular focus on the "low mass" region (neutral Higgs < 400 GeV)
- The 2HDM parameter space is large
 - Free parameters: **mh, mH, mH+, mA, tanβ, α** (or m_{12} and potential parameters $\lambda_1, ..., \lambda_5$) for the CP-conserving 2HDM
 - Different possible scan: cos(β α) , tanβ and 3 self-coupling combinations λ , λ_A and λ_F (mh is fixed to 125, so 5 parameters remain)
 - Some simplifications have to be done (e.g. mh=125 GeV, some parameters neglected for specific searches, etc)

• Tools:

- For the experimental search we need (σ X BR)($m_h, m_H, m_H, m_A, \alpha, \beta, m_{12}, ...$)
- BR and width
 - 2HDMC calculates all 2HDM BR and width for any parameter (yukawa type, mass or potential term) at tree level
 - HDECAY/EDECAY: can calculate BR and width taking into account higher order corrections; in the latest version we have to include the couplings by hand in order to get the 2HDM
- Production cross sections
 - SusHi : can calculate ggh and bbh production
 - VBF/VH: one can get adequate estimates by running VBF@NNLO and VH@NNLO and NLO and apply the 2HDM ouplings to the Higgs to these cross sections
 - Charged Higgs? There is a calculation by M. Dittmaier et al for MSSM; can it be modified to implement 2HDM?

ANALYSIS CUTS

S.Diglio & S.Lacaprara

$M_{\tau\tau}$ mass distribution

Fully leptonic $H \rightarrow \tau \tau$ decay

- Invariant mass not fully constrained by reconstructed objects
- $M_{\mu e}$ would underestimate m_{H}
- Undetected neutrinos $\rightarrow E^{T}_{miss}$

ATLAS

Missing Mass Calculator (MMC)

Scans neutrino direction and keep Most probable value for mass reconstruction

CMS

Maximum Likelihood Mass

Likelihood for free parameters maximized wrt kinematic constraints

ATLAS $H^+ \rightarrow \tau \nu$

$$t\bar{t} \rightarrow b\bar{b}(\tau_{lep}\nu)(\tau_{had}\nu)$$

- $P_{e}^{t} > 25 \text{ or } P_{\mu}^{t} > 20 \text{ GeV}$
- Tau: P^t_τ> 20 GeV
- ≥1 b-tagged jets
- tau lepton fake from e and jets estimated from data

- $\tau + E_{miss}^{t}$ trigger
- ≥4 jets, ≥1 b-tagged
- Tau: $P_{\tau}^{t} > 40 \text{ GeV}$
- E^t_{miss}> 65 GeV
- Top pair kinematics
- Multi jet bkg estimated from E^t_{miss} template fit

200 $\overrightarrow{ft} \rightarrow b\overline{b}W^*W$ Others SSI SM + uncertainty $\overrightarrow{m}_{H'} = 130 \text{ GeV}$ B(t → bH') = 5% 100 $\overrightarrow{Js} = 7 \text{ TeV}$ ATLAS 100 $\overrightarrow{Js} = 7 \text{ TeV}$ 20 40 60 80 100 120 140 160 180 m^H [GeV]

- Single μ or e trigger
- $P_{e}^{t} > 25 \text{ or } P_{\mu}^{t} > 20 \text{ GeV}$
- 2 b-tagged jets
- E^t_{miss}> 40 GeV
- Top pair kinematics
- Fake leptons bkg estimated in loose control samples

tituto Nazionale

i Fisica Nucleare

CMS: $H^+ \rightarrow \tau v$

Di-leptons (eµ)

- eµ trigger
- P^t> 20 GeV
- ≥2 jets, P^t_{jet}> 30 GeV
- Main bkg: tt

τ + leptons $\sqrt{s} = 7 \text{ TeV}, 4.9 \text{ fb}^{-1} \text{ CMS Preliminary}$

- Single μ (or e) trigger
- One isolated e/μ
- ≥2 jets, P^t_{jet}> 35(30)
 GeV, ≥1 b-tagged
- E^t_{miss}> 45(40) GeV
- 1 Tau: P^t_τ> 20 GeV
- OS τ-lepton

τ + jets

- $\tau + E^{t}_{miss}$ trigger
- ≥3 jets, P^t_{jet}> 30 GeV, ≥1 b-tagged
- 1 Tau: P^t_τ> 40 GeV
- E^t_{miss}> 50 GeV
- $\Delta \phi(\tau + E^t_{\text{miss}}) < 160$
- Reconstruct $M_T(\tau + E_{miss}^t)$

MSSM: bb A/H/h \rightarrow bb

CMS 2.7- 4.8 fb⁻¹ @ 7 TeV Use di-b-jets mass and Event-BTag, a Ο dedicated variable that combines the Search for H->bb produced in b-tag info of the 3 jets association with b-quarks Ο Get 2D data-driven templates Two approaches: Ο Fit 2D templates to observed data. • All-hadronic **o** Semi-leptonic Use di-b-jets mass Ο Two dedicated triggers path Two data driven QCD background small overlap estimates from single and double b-tag samples CMS-PAS-HIG-12-033 ، 00000 د د با CMS 2011, L = 4.8 fb⁻¹, √s = 7 TeV CMS 2011, L = 2.7 fb⁻¹, vs = 7 TeV CMS 2011, L = 2.7 fb⁻¹, vs = 7 TeV GeV 20000 _____ Semileptonic Analysis SeV 2500 All-Hadronic Analysis All-Hadronic Analysis Events / 10 C Low-Mass Scenario a 18000 Low-Mass Scenario Low-Mass Scenario (a)Data 60000 $\chi^2/N_{DF} = 121 / 111$ $\chi^2/N_{DE} = 121 / 111$ Background 월 16000 Data Data M₄=120 GeV hhX 50000 bbX ₫ 14000 M₄=180 GeV bbB bbB 1500 (tan β=30) (Qb)b (Qb)b 12000 (Cb)b (Cb)b 40000 (Bb)b (Bb)b 1000 10000 BG Uncert BG Uncert. 30000 8000 500 6000 20000 OH 4000 100 10000 2000 OH -100 5 100 150 200 250 300 350 400 450 500 50 Data - Background X₁₂₃ 50 100 150 200 250 300 350 400 450 500 M₁₂ [GeV] õ M., [GeV]

S.Diglio & S.Lacaprara

FUTURE PLANS

Upgrade issues

- Trigger object definitions
 - H⁺ physics relies on τ+MET triggers currently → these challenge the trigger bandwidth
- Level-1 Topological
 - What can be gained by having access to η, φ, and E_T at Level-1 for τ, jet, bjet topologies?
 - Study topological triggers to avoid the threshold creep

