Analysis strategy	Trigger	Selection	Background	Systematics	Sensitivity	Summary	Backup 0000000

MSSM $bb(H \rightarrow bb)$ semileptonic

Antonio Branca¹, Ugo Gasparini¹, Tommaso Dorigo², Kostya Kanishev³, **Stefano Lacaprara**², Paolo Ronchese¹, Mia Tosi¹, Alberto Zucchetta¹

> ¹Dipartimento di Fisica e Astronomia, University of Padova ²INFN sez. Padova ³Dipartimento di Fisica, University of Trento

> > Higgs Pre-Approvals Meeting, CERN, 8 June 2012

イロト 不得下 イヨト イヨト

- Analysis strategy
- 2 Trigger
- 3 Selection
- 4 Background
 - Btag probability matrices
 - HyperBall
 - B-Matrix vs HyperBall
- 5 Systematics
 - Background Normalization Systematics
- 6 Sensitivity
 - 7 Summary

3

< 🗇 🕨

3 K K 3 K

• AN AN-11-428

• PAS HIG-12-027

Available on the CMS information server

CMS AN AN-11-428

CMS Draft Analysis Note

The content of this note is intended for CMS internal use and distribution only

2012/06/07 Head Id: 127729 Archive Id: 127728:127800 Archive Date: 2012/06/06 Archive Tag: trunk

Search for SuperSymmetric Higgs boson states decaying into a pair of b-quarks with semi-leptonic trigger

A. Branca², T. Dorigo¹, U. Gasparini², K. Kanishev³, S. Lacaprara¹, P. Ronchesse², M. Tosi², and A. Zucchetta²

> ¹ ININ Sezione di Pádora ² Dipartimento di Fisica e Astronomia, University of Padova ³ Dipartimento di Fisica, University of Trento

> > Abstract

In this paper the results of a watch of neutral SuperSymmetric Higgs particles decoring this pairs of b-spartek, and produced in association with other two b-spartek are presented, using the data corresponding to 4.4 β^{-1} collected in 2011 with a senglaphic Higgs PM to CMS experiment at the LHS, copering at control of mass mergy of 7 BeV. We different data driven material the particle sparter for the sensted of the sparter of the sense sectod, with a continued non-statistical and systematical uncertainties. The results

PDFAuthor	S. Lacaprara, U. Gasparini
PDFTide:	Search for Neutral SuperSymmetric Higgs boson states decaying into a pail of b-quarks at the LHC
PDPSubject:	CMS
PDFKeywords:	CMS, physics, Hines, beauty

• HN HIG-12-027

• Twiki CMS/HiggsBBbb

CMS PAS HIG-12-027

DRAFT CMS Physics Analysis Summary

The content of this note is intended for CMS internal use and distribution only

2012/06/05 Head Id: 127528 Archive Id: 127506:127528 Archive Date: 2012/06/05 Archive Tag: trunk

MSSM Higgs production in association with b quarks semi leptonic

The CMS Collaboration

Abstract

In this paper the residu of a similar of vigoral SuperStylmetric Higgs particles decoying into pairs of be-parker, and provided in association with other two be-guidas, are presented. The data aied, cerempending to 4.6 β^{-1} , was colleadd in 2011 units a settle laptices tracing by $\beta_{\rm H}$ CRS dependent at the LTRC, operating at corter of are dependent of the state presential of the transverse of relation and systematical uncertainties. The results are presential to the transverse of relation.

PDFAuthor:	S.Lacarrara, U.Gasparini
PDFDide:	MSSM Hiers production in association with b quarks - semi leptonic
PDFSubject	CMS
PDFKeywords:	CMS, physics, software, computing

Lacaprara S. (INFN Padova)

Padova 5/6/2012 3 / 71

- Search for Neutral SUSY Higgs, $H \rightarrow b\bar{b}$;
- Large $BR(H \rightarrow b\bar{b}) \approx 90\%$
- huge multijet QCD background:
 - Use associate production to reject hadronic background
 - $pp \rightarrow b\bar{b}H \rightarrow b\bar{b}b\bar{b}$
 - Large σ for large tan β
 - A/H/h degeneration increases σ
 - e.g. $\sigma_{M=120} \times BR \approx 250 \ pb$ for tan $\beta = 30$
- Compete with $H \rightarrow \tau \tau$ channel:
 - larger yield,
 - larger background (QCD),
 - different channel.

- 4 *b* final state: $H \rightarrow bb$ plus additional associated *b*'s
- trigger is critical:
 - ► Use semi-leptonic (muon) *b* decay for trigger: muon+jets+b-tagging
- Major irreducible background source is multijet QCD
- Data driven background estimate from bbj sample
 - define signal-poor control sample;
 - B-tagging Matrix method:
 - ★ get b/c-fraction of 3rd jet from mass & lifetime fits
 - ★ combine with MC b-tagging efficiency to derive B-tag probability
 - ★ weight bbj events to estimate number of 3-b-tags in signal region
 - Second approach with nearest-neighbour method (hyperball)
 - ★ start from bjj
- Use reconstructed mass of leading jet pair as signal-sensitive variable in final fit
- Use only 2011 data

(日) (同) (三) (三)

- Define a control region in Data sample, where the expected signal to background ratio is very small, using a suitable discriminator developed in MC samples;
- perform full analysis on MC, including closure test in control and signal region;
- work exclusively on control region for Data
- show only background prediction for Data in signal region
- open the box (signal region) after green light.

(日) (同) (三) (三)

• Use semi-leptonic b decay for trigger: muon + jets + b-tagging

Use different trigger Path in 2011 to cope with increasing $\mathcal L$

~~			
HLT paths	runs	triggers	$\int \mathcal{L} dt \; [\mathrm{pb}^{-1}]$
Mu12_CentralJet30_BtagIP	163738-165633	3 027 717	180.9
Mu12_DiCentralJet30_BtagIP3D	165970-166967	4 532 555	537.1
Mu12_DiCentralJet20_DiBtagIP3D1stTrack	167039-173198	2 244 550	1108.6
Mu12_eta2p1_DiCentralJet20_DiBtagIP3D1stTrack	173236-176469	1 237 147	652.2
Mu12_eta2p1_DiCentralJet20_DiBtagIP3D1stTrack*	176545-180252	5 690 304	2326.8
All		16732273	4805.7

H ightarrow bb Signal selection samples				
Run2011A	/MuHad/Run2011A-May10ReReco-v1/AOD			
Run2011A	/MuHad/Run2011A-PromptReco-v4/AOD			
Run2011A	/MuHad/Run2011A-05Aug2011-v1/AOD			
Run2011A	/MuHad/Run2011A-PromptReco-v6/AOD			
Run2011B	/MuHad/Run2011B-PromptReco-v1/AOD			
	Trigger efficiency samples			
Run2011A	/SingleMu/Run2011A-May10ReReco-v1/AOD			
Run2011A	/SingleMu/Run2011A-PromptReco-v4/AOD			
Run2011A	/SingleMu/Run2011A-05Aug2011-v1/AOD			
Run2011A	/SingleMu/Run2011A-PromptReco-v6/AOD			
Run2011B	/SingleMu/Run2011B-PromptReco-v1/AOD			

Table: Summary of data samples used in this analysis

3

Selections

Baseline selections:

- Trigger
- at least 1 global muon $P^{\mu}_{T} > 15$ GeV, no isolation required;
- at least 3 jets (PFak5, Looseld) $|\eta| <$ 2.6, $P_T > (30, 30, 20)$ GeV
 - $\Delta R_{ij} > 1$ for any pair $_{ij}$ of jets
 - \blacktriangleright the μ inside one of the two leading jets;
- *bjj* the first jet must have b-tag CSV > 0.8
- *bbj* the second jet must have b-tag CSV > 0.8

bbb last selection: third jet b-tag CSV > 0.7

3

(日) (周) (三) (三)

 $\epsilon(\mu)$

- consider HLT_Mu12 path
- Computed on data using lower (pre-scaled) singleMu trigger path
- ullet as a function of reconstructed muon p_{T}
- for $p_t > 15$ already in plateau $\gtrsim 99\%$.

< 3

< 1[™] >

Analysis strategy Selection Backup Trigger Background Summary INFN 🔀 Trigger paths vs Analysis Second iet Pt before cuts 1u12 Control lot10 RTon M12 before cuts Mu12 DiCentralJet30 BTaolP3D Mu12 DiCentral Jet30 BTaolP30 Mu12_DiCentralJet20_DiBTaglP3D1stTrack Mu12_DiCentral Jet20_DiBTagIP3D1stTrack eta2p1 DiCentralJet20 DiBTaoIP3D1stTrack eta2o1 DiCentralJet20 DiBTaoIP3D1stTra Before 0.0 0.04 0.0 0.03

0.02

0.0

0.05

0.04

0.03

0.02

0.0

M12 after cuts

100

250 300

Mu12 CentralJet30 BTaolF

Mu12_DiCentralJet30_BTagIP3D

Mu12 DiCentralJet20 DiBTagIP3D1stTrack

Mu12_eta2p1_DiCentralJet20_DiBTagIP3D1stTrack

After pre-selection cut, distributions for different paths are similar

0.04

0.02

0

0.08

0.0

0.04

0.02

After Preselection

20

Second jet Pt after cuts

40

70

Mu12_DiCentral Jet20_DiBTagIP3D1stTrack

Mu12 eta2o1 DiCentralJet20 DiBTaolP3D1stTrack

Mu12 DiCentral Jet30 BTaolP30

second iet

- Define a control region using a likelihood ratio discriminator using the most discriminating variables (depends on M_H)
- Build B-tagging probability matrices P^{3rdjet}_{b-tag}(...) in control region for third jet, as a function of 3rd jet and event parameters;

$$\mathsf{P}_{b-tag}^{3^{rd}jet}(\ldots) = \epsilon_b \cdot f_b + \epsilon_c \cdot f_c + \epsilon_l \cdot f_l$$

- ▶ b-tagging efficiencies $\epsilon' s$ from MC $\epsilon = \epsilon(E_T, |\eta|, N_{trk})$
- ► flavour fractions f_{b,c,l} from Data parametrization see next slides
- Estimate any *bbb* distribution *F*(*x*; *bbb*) for variable *x* in signal region starting from same distribution for *bbj*;

$$F(x; bbb) = F(x; bbj) \otimes P_{b-tag}^{3^{rd}jet}(\ldots)$$

Consider Mass@Vertex and JetBProbability for third jet;

- build distribution templates from MC QCD, for B, C and Light;
- fit third jet distributions using templates and get $F_{b,c}$;
 - use only JetBProbability if Mass@Vertex not available.

< 1[™] >

Shape fine for all HLT paths

Lacaprara S. (INFN Padova)

(日) (周) (三) (三)

- For each event in $(bjj)_{CR}$ select a set of *similar* events $\mathcal{O}(100)$ from a large training sample $\mathcal{O}(500\,000)$
- Compute the fraction f of these events passing full selection (bbb);
- *similarity* is defined by *distance* between events in hyperspace

$$\mathcal{A}=\Sigma_{i}^{n}\left(w_{i}\left(x_{i}-y_{i}
ight)
ight)^{2}$$
 (hence the name)

- with x_i, y_i jets or event variables (p_T, η, Δφ_{ij}, ...): total of 14 variables used;
- *w_i* weight to account for different variable values and for variability of *f* vs a given variable;
- ► subtleties: w_i tuning, which variables to consider, how many events in training sample, events near the boundary of variables domain, ...
- Very CPU intensive!

 $F(x; \frac{bbb}{bb}) = F(x; \frac{bjj}{bj}) \otimes f$

Very good closure for control region both in low and high mass range

Selection Analysis strategy Trigger Background Sensitivity Summarv Backup Comparison of B-Matrix and HB prediction INFN In signal region High Mass $M_H > 200 \ GeV$ Low Mass $M_H < 200 \ GeV$ Weighted average Neighted average rediction with B-tag Matrix Prediction with B-tag Matrix 250 ě à 000 Prediction with HyperBall Prediction with HyperBall 2000 CMS preliminary 2011 800 CMS preliminary 2011 √s = 7 TeV √s = 7 TeV 1500 dt = 4.8 fb⁻¹ dt = 4.8 fb

blind: prediction only

200

1.2

1.1

0.9

0.8

(BM/HB) = 1.01 ± 0.01

150

200 250 300

• Absolute prediction, **NOT** normalized

weighted average as combined prediction;

M, [GeV]

PAS

 use comparison as systematic error on shape, unfolding the statistical one (pdg recipe);

Lacaprara S. (INFN Padova)

100 150

(BM/HB) = 1.00 ± 0.01

200 250 300

1000

500

1.2 1.1

1 0.9

0.8

M,, [GeV]

PAS

350

- Trigger syst: $\approx 3 5\%$ from data driven ϵ estimate;
- Physics object syst:
 - ▶ B-tagging eff. BTV-12-001 \approx 4% per BJet: \approx 12% for three jets.
 - JEScale $^{+2.5}_{-3.1}\%$
 - JEResolution ±1.9%
 - Mu momentum scale pprox 0.2% and resolution pprox 0.6%
- pdf For $M_H = 120 \ GeV$: $^{+2.5}_{-2.7}$ %; for $M_H = 250 \ GeV$: $^{+4.7}_{-4.4}$ %;
- Integrated Lumi syst: $\approx 2.2\%$
- Background normalization syst $\approx 5\%$ (see next slides):

(日) (同) (三) (三)

- Two major source of normalization systematics for the predicted *bbb* in signal region:
 - Systematics from bbb prediction from DATA control region
 - compare bbb and prediction in DATA control region;
 - use normalization in signal region;
 - use fit error as systematics;
 - Ø Systematics due to extrap. from control to signal region from MC
 - ★ get ratio of ratios from MC (signal/control) and fit it;
 - ★ use fit results to correct extrapolation bias;
 - and fit errors to estimate systematics for extrapolation;
- in both cases, a flat ratio is found, so overall systematics, not bin per bin.

Analysis strategy	Trigger	Selection	Background	Systematics	Sensitivity	Summary	Backup
			000000000	0000			0000000

< 🗇 🕨

Padova 5/6/2012 31 / 71

Lacaprara S. (INFN Padova)

- Search of MSSM neutral higgs decaying into $b\bar{b}$ with associated $b\bar{b}$ production and semileptonic trigger;
- Two independent data driven methods to estimate QCD background, with remarkable agreement in prediction;
- expected sensitivity is interesting;
 - the analysis can be repeated with 2012 data, where a dedicated trigger is collecting data;
 - other possible improvement: Multi-Variate analysis, b-jet energy regression, ...
- We'd like to have a look to what is under the hat, in the signal region

We are asking the pre-approval from the Higgs group

Lacaprara S. (I	INFN Padova)
-----------------	--------------

(日) (同) (三) (三)

Analysis strategy	Trigger	Selection	Background 0000000000	Systematics	Sensitivity	Summary	Backup

BACKUP

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

of M_A and tan β , taking into account the mass degeneration. (b) Same as (a) as \sim

3

< ∃→

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Figure: Reconstructed number of primary vertex in MC simulation with original and reweighted PileUp distribution compared to that found in 2011 Data.

Reckground Processo							
Dackground i rocesses							
Description	Dataset Name	$\int \mathcal{L} dt [fb^{-1}]$					
QCD (μ enriched)	/QCD_Pt-20_MuEnrichedPt-15_TuneZ2_7TeV-pythia6	0.296					
$t\overline{t} + jets$	/TTJets_TuneZ2_7TeV-madgraph-tauola	423					
	Signal Processes $bbH \rightarrow bbbb$						
$m_H = 90 \text{ GeV}$	/SUSYBBHToBB_M-90_7TeV-pythia6-tauola	1.64					
$m_H = 100 \text{ GeV}$	/SUSYBBHToBB_M-100_7TeV-pythia6-tauola	2.29					
$m_H = 120 \text{ GeV}$	/SUSYBBHToBB_M-120_7TeV-pythia6-tauola	4.29					
$m_H = 130 \text{ GeV}$	/SUSYBBHToBB_M-130_7TeV-pythia6-tauola	5.41					
$m_H = 140 \text{ GeV}$	/SUSYBBHToBB_M-140_7TeV-pythia6-tauola	3.98					
$m_H = 160 \text{ GeV}$	/SUSYBBHToBB_M-160_7TeV-pythia6-tauola	6.22					
$m_H = 180 \text{ GeV}$	/SUSYBBHToBB_M-180_7TeV-pythia6-tauola	9.73					
$m_H = 200 \text{ GeV}$	/SUSYBBHToBB_M-200_7TeV-pythia6-tauola	14.80					
$m_H = 250 \text{ GeV}$	/SUSYBBHToBB_M-250_7TeV-pythia6-tauola	37.96					
$m_H = 300 \text{ GeV}$	/SUSYBBHToBB_M-300_7TeV-pythia6-tauola	87.52					
$m_H = 350 \ GeV$	/SUSYBBHToBB_M-350_7TeV-pythia6-tauola	198.56					

3

<ロ> (日) (日) (日) (日) (日)

Analysis strategy	Trigger	Selection	Background 0000000000	Systematics	Sensitivity	Summary	Backup 0000000
HLT							INFN

HLT paths	run	triggered	∫ £dt
(L1 seed)	range	events	$[pb^{-1}]$
HLT_Mu12_CentralJet30_BtagIP			
L1_SingleMu7	163738-165633	3 0 27 7 17	180.9
HLT_Mu12_DiCentralJet30_BtagIP3D			
L1_SingleMu10	165970-166967	4 532 555	537.1
HLT_Mu12_DiCentralJet20_DiBtagIP3D1stTrack			
L1_SingleMu10	167039-173198	2 244 550	1108.6
HLT_Mu12_eta2p1_DiCentralJet20_DiBtagIP3D1stTrack			
L1_Mu10_Eta2p1_DoubleJet_16_8	173236-176469	1 237 147	652.2
HLT_Mu12_eta2p1_DiCentralJet20_DiBtagIP3D1stTrack*			
L1_Mu10_Eta2p1_DoubleJet_16_8*	176545-180252	5 690 304	2326.8
All		16732273	4805.7

・ロト・(局)・(目)・(目)・(日)・(の)

HLT Path	signal efficiency [%]
HLT_Mu12_CentralJet30_BtagIP	3.64 ± 0.19
HLT_Mu12_DiCentralJet30_BtagIP3D	2.28 ± 0.11
HLT_Mu12_DiCentralJet20_DiBtagIP3D1stTrack	1.66 ± 0.07
HLT_Mu12_eta2p1_DiCentralJet20_DiBtagIP3D1stTrack	1.65 ± 0.06

Table: Signal efficiency for the different HLT paths. The reported signal efficiency is estimated only for the Higgs mass point $m_H = 120 GeV/c^2$ and it does not take into account the offline selection.

- CMSSW 4_2_7 including JetMet suggested tags.
- AK5 ParticleFlow Jets, JEC applied:
 - L1FastJet, L2Relative, L3Absolute, L2L3Residual (only for Data)
 - ► Global Tag: FT_R_42_V20A and START42_V17 for Data and MC
 - PU treatment: PF Charged Hadron Subtraction and Area Method;
 - Loose JetId selections;
- Jet b-tagging used is Combined Secondary Vertex (CSV);
- Standard Global Muon (no isolation requirements)
- JES and JER from POG (CERN-PH-2011/102 and update JetMET presentation 9/1/12);
- BTag efficiency studies on top samples (BTV-12-001);
- Muon (non isolated) efficiency on J/ψ MUO-10-004;

Cut	Mu12 CentralJet30 BTagIP	Mu12 DiCentralJet30 BTagIP3D	Mu12 DiCentralJet20 DiBTagIP3D1stTrack	Mu12.eta2p1 DiCentralJet20 DiBTagIP3D1stTrack	Mu12_eta2p1 DiCentralJet20_NewJEC DiBTagIP3D1stTrack	All
All	3027717	4532555	2244550	1237147	5690304	16732273
$p_{\mathrm{T}}^{\mu} > 15~GeV$	1757902	2678935	1337394	742231	3222677	9739139
#jets >= 3	665962	1245655	639616	404082	1556012	4511327
$\Delta R_{ij} >= 1$	513981	957884	498996	315284	1219439	3505584
$CSV(1^{st} - jet) > 0.8$	242982	492734	297838	184075	714506	1932135
$CSV(2^{nd} - jet) > 0.8$	52345	112428	162029	99175	387708	813685
μ in 1 st or 2 nd jet	50708	108551	156147	95760	374774	785940
$CSV(3^{rd} - jet) > 0.7$	3245	7323	12796	7623	29208	60195
$\int \mathcal{L}dt \left[pb^{-1} \right]$	180.9	537.1	1108.6	652.2	2326.816	4805.7

Table: Data reduction after each selection cut for the various trigger paths

3

(日) (同) (三) (三)

	M _H [GeV]							
Cut	90	100	120	130	140	160	180	200
All	3181487	2282039	1225179	942164	664435	425194	271531	178458
$p_{\mathrm{T}}^{\mu} > 15 \; GeV$	79166	71272	53760	47703	37522	29513	21972	16306
#jets >= 3	13416	13012	11321	10649	9028	8009	6546	5290
$\Delta R_{ii} >= 1$	11709	11423	9796	9161	7689	6729	5386	4267
$CSV(1^{st} - jet) > 0.8$	7452	7339	6416	5970	5133	4440	3545	2834
$CSV(2^{nd} - jet) > 0.8$	4202	4078	3752	3405	3003	2662	2172	1747
μ in 1 st or 2 nd jet	3617	3508	3222	2937	2611	2321	1873	1509
$CSV(3^{rd} - jet) > 0.7$	1338	1324	1305	1160	1079	953	744	591
€ [%]	0.042	0.058	0.107	0.123	0.162	0.224	0.274	0.331

Table: Events reduction for selection cuts for SUSY simulated signal samples, normalized to a cross section for tan $\beta = 30$, for mass point in the low mass range $M_H < 200 \text{ GeV}$. The trigger efficiency is included only starting from the cut #jets >= 3 by applying the data driven turn-on curves.

イロト 不得下 イヨト イヨト

	M _H [GeV]		
Cut	250	300	350
All	69624	29935	13310
$p_{ m T}^{\mu} > 15~GeV$	8040	4014	1999
# jets $>= 3$	3012	1686	901
$\Delta R_{ij} >= 1$	2381	1303	685
$CSV(1^{st} - jet) > 0.8$	1584	850	441
$CSV(2^{nd} - jet) > 0.8$	986	531	271
μ in 1^{st} or 2^{nd} jet	860	465	239
$CSV(3^{rd}-jet) > 0.7$	340	181	92
€ [%]	0.488	0.605	0.691

Table: Events reduction for selection cuts for SUSY simulated signal samples, normalized to a cross section for tan $\beta = 30$, for mass point in the high mass range $M_H > 200 \text{ GeV}$. The trigger efficiency is included only starting from the cut #jets >= 3 by applying the data driven turn-on curves.

(日) (周) (三) (三)

< 17 ▶

- Use **SingleMuon PD**, select all events passing a single muon path.
- Apply preselection (2 bjets)
- Build Turn on curves vs first and second B-jets Pt:

 $\epsilon = \frac{\text{Hbb path \& presel \& SingleMuHLT}}{\text{presel \& SingleMuHLT}}$

• Here for

HLT_Mu12_DiCentralJet30_BtagIP3D and SingleMu30

• Turn-on stable wrt SingleMu threshold

Analysis strategy

trategy Trigger

Selection

Background

Systematics

Sensitivity

Summary

Backup

Trigger Efficiency (I)

HLT_Mu12_DiCentralJet30_BtagIP3D

Statistics bit low but still affordable

HLT_Mu12_DiCentralJet20_DiBtagIP3D1stTrack

Lacaprara S. (INFN Padova)

3

Mass spectra, trigger corrected

HLTMu12_DicentralJet30_BtagIP3D L = 525 pb-1 2 btags HLTMu12_DicentralJet20_DiBtaglP3D1stTk L = 1002 pb-1

Applying pre-selections (2 b-tag) only: no bias in M_{ii} nor M_{bb}

∃ → (∃ →

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Left to Right:

 ϵ_B All, $N_{trk} < 10$, $N_{Trk} \ge 10$

3

(日) (同) (三) (三)

Left to Right:

 ϵ_{C} All, $N_{trk} < 10$, $N_{Trk} \ge 10$

3

(日) (同) (三) (三)

Left to Right:

 $\epsilon_{\textit{Light}}$ All, $\textit{N}_{\textit{trk}} < 10$, $\textit{N}_{\textit{Trk}} \geq 10$

Lacaprara S. (INFN Padova)

___ ▶

Correlation Coefficient ρ = 0.522

- ∢ ⊢⊒ →

3

assuming no correlation.

One factor for the third jet features, one for the event topologies.

Use $F_{B,C}(\Delta R_{H,j_3}, |\Delta R_{j_1,j_2}|)$ only for shape: $F_{B,C}$ average, weighted to *bbj* distribution, is normalized to unity.

$$\int_{C \text{ reg.}} \frac{dN}{d\Delta R_{12} d\Delta R_{H,j3}} \cdot F_{B,C} \left(\Delta R_{H,j3}, \Delta R_{12}\right) d\Delta R_{12} d\Delta R_{H,j3} = \\ \int_{C \text{ reg.}} \frac{dN}{d\Delta R_{12} d\Delta R_{H,j3}} d\Delta R_{12} d\Delta R_{H,j3}$$

-

• • • • • • • • • • • •

< ロ > < 同 > < 三 > < 三

Image: A math a math

Image: A match a ma

Selection

(日) (同) (日) (日)

E _{T1}	1 st jet transverse energy			
η_1	1 st jet pseudorapidity			
E _{T2}	2 nd jet transverse energy			
η_2	2 nd jet pseudorapidity			
n _{tk2}	2^{nd} jet track multiplicity			
E _{T3}	3 rd jet transverse energy			
η_3	3 rd jet pseudorapidity			
n _{tk3}	3 nd jet track multiplicity			
$\Delta \varphi_{12}$	1^{st} and 2^{nd} jet azimut difference			
ΔR_{23}	2^{nd} and 3^{rd} jet R distance			
M ₁₂	$1^{ m st}$ and $2^{ m nd}$ jet invariant mass			
PT12	$1^{ m st}$ and $2^{ m nd}$ jet combined transverse momentum			
PT23	2^{nd} and 3^{rd} jet combined transverse momentum			
PT123	$1^{ m st}$, $2^{ m nd}$ and $3^{ m rd}$ jet combined transverse momentum			

Table: List of variables used to build the "distance" as defined in eq.??

3

(日) (同) (三) (三)

Selection

(日) (同) (三) (三)

Example of signal injection and extraction $M_H = 120 \ GeV$

Results using combine tool from Higgs Group

for $M_H = 120$ expected limit with all syst Expected 50.0%: $r < 256.2458 \ pb$ expected limit with all syst BUT bkgNorm Expected 50.0%: $r < 81.6096 \ pb$ the bkgNorm systematics is just 4.5%: such a huge leap is weird!

(日) (周) (三) (三)