Analysis strategy	Trigger	Selection	Background 000000000	Systematics 00	Sensitivity	Summary	Backup 0000000

MSSM $bb(H \rightarrow bb)$ semileptonic

Antonio Branca, Ugo Gasparini, Tommaso Dorigo, Kostya Kanishev, Stefano Lacaprara, Paolo Ronchese, Mia Tosi, Alberto Zucchetta

INFN Padova

Higgs Review, CERN, 16 May 2012

- 4 同 ト 4 三 ト 4 三

- Search for Neutral SUSY Higgs, $H \rightarrow b\bar{b}$;
- Large $BR(H
 ightarrow b ar{b}) pprox 90\%$
- huge multijet QCD background:
 - Use associate production to reject hadronic background
 - $pp \rightarrow b\bar{b}H \rightarrow b\bar{b}b\bar{b}$
- Compete with $H \rightarrow \tau \tau$ channel:
 - larger yield,
 - larger background (QCD),
 - different channel.

- Three *b* final state: $H \rightarrow bb$ plus additional associated *b*
- trigger is critical:
 - ► Use semi-leptonic (muon) *b* decay for trigger: muon+jets+b-tagging
- Major irreducible background source is multijet QCD
- Data driven background estimate from *bbj* sample
 - define signal-poor control sample;
 - get b/c-fraction of 3rd jet from mass & lifetime fits
 - combine with MC b-tagging efficiency to derive B-tag probability
 - weight bbj events to estimate number of 3-b-tags in signal region
 - Alternative approach with near neighbours method: hyperball.
- Use reconstructed mass of leading jet pair as signal-sensitive variable in final fit
- Use only 2011 data

• Use semi-leptonic b decay for trigger: muon + jets + b-tagging

Use different trigger Path in 2011 to cope with increasing $\mathcal L$

00	•		
HLT paths	runs	triggers	$\int \mathcal{L} dt \; [\mathrm{pb}^{-1}]$
Mu12_CentralJet30_BtagIP	163738-165633	3 027 717	183.815
Mu12_DiCentralJet30_BtagIP3D	165970-172952	4 532 555	524.904
Mu12_DiCentralJet20_DiBtagIP3D1stTrack	167039-173198	1 873 247	780.378
Mu12_eta2p1_DiCentralJet20_DiBtagIP3D1stTrack	173236-178380	4 762 858	1944.527
Mu12_eta2p1_DiCentralJet20_DiBtagIP3D1stTrack*	178420-180252	2 164 634	811.861
All		16 361 011	4245.485

<ロ> (四) (四) (日) (日) (日)

Lacaprara S. (INFN Padova)

•
$$\epsilon_{trigger} = \epsilon(\mu) \times \epsilon(b - jets)$$

- SingleMu PD, select all events passing a single muon path.
- Apply selection
- Build Turn on curves vs first and second B-jets Pt:

 $\epsilon = \frac{\text{Hbb path \& (pre)sel \& SingleMuHLT}}{(pre)sel \& SingleMuHLT}$

- Turn-on stable wrt SingleMu threshold
- Mu12 turn-on indipendently computed from prescaled SingleMu

Selections

Baseline selections:

- Trigger
- at least 1 global muon $P_T^{\mu} > 15$ GeV, no isolation required;
- at least 3 jets (PFak5, Looseld) $|\eta| <$ 2.6, $P_T > (30, 30, 20)$ GeV
 - $\Delta R_{ij} > 1$ for any pair $_{ij}$ of jets
- *bbj* the first 2 jets must have b-tag CSV > 0.8
 - \blacktriangleright the μ inside one of the two leading jets;

bbb last selection: third jet b-tag CSV > 0.7

3

- Define a control region using a likelihood ratio discriminator using the most discriminating variables (depends on M_H)
- Build B-tagging probability matrices P^{3rdjet}_{b-tag}(...) in control region for third jet, as a function of 3rd jet and event parameters;

$$\mathsf{P}_{b-tag}^{3^{rd}jet}(\ldots) = \epsilon_b \cdot f_b + \epsilon_c \cdot f_c + \epsilon_l \cdot f_l$$

- ▶ b-tagging efficiencies $\epsilon' s$ from MC $\epsilon = \epsilon(E_T, |\eta|, N_{trk})$
- ► flavour fractions *f*_{b,c,l} from Data parametrization see next slides
- Estimate any *bbb* distribution *F*(*x*; *bbb*) for variable *x* in signal region starting from same distribution for *bbj*;

$$F(x; bbb) = F(x; bbj) \otimes P_{b-tag}^{3^{rd}jet}(\ldots)$$

Lacaprara S. (INFN Padova)

Consider Mass@Vertex and JetBProbabilty for third jet;

- build distribution templates from MC QCD, for B, C and Light;
- fit third jet distributions using templates and get $F_{b,c}$;
 - used only JetBProbability if Mass@Vertex not available.
- for Data, fit separately single B-tag and double B-Tag HLT paths.

Lacaprara S. (INFN Padova)

Hbb

CERN 16/05/2012 10 / 39

Enanchement of b in third jets, due to the online double b-tag trigger, is clearly visible.

- 4 同 1 - 4 三 1 - 4 三 1

Lacaprara S. (INFN Padova)

Can divide phase space in three regions: control, no man's land and signal, and use (blind) NML to check prediction consistency on Data before opening signal region.

< A

Alternative approach, can be useful to cross check results, study sistematics or for combination: see Ronchese's talk 27/4/2012

General idea

- Start from *bjj* sample, control region;
- For each event in $(bjj)_{CR}$ select a set of similar events $\mathcal{O}(1000)$
- Compute the fraction of these events passing full selection (bbb);
- similarity is defined by distance between events in hyperspace $d = \sum_{i}^{n} (w_i (x_i - y_i))^2$
 - with x_i, y_i jet or event variables $(p_T, \eta, \Delta \phi_{ij}, \dots)$;
 - w_i weight to account for variability of *fraction* vs a given variable;
- Use the average fraction to weight events and predict *bbb* distribution.

3

- Trigger syst: \approx 3 5% from data driven ϵ estimate;
- Physics object syst:
 - B-tagging eff. BTV-12-001 \approx 4% per BJet
 - JEScale $^{+2.5}_{-3.1}$ %
 - ▶ JEResolution ±1.9%
 - $\blacktriangleright\,$ Mu momentum scale $\approx 0.2\%$ and resolution $\approx 0.6\%$ negligible
 - Mu efficiency (MUD-10-004) (small?)
- Background determination syst $\approx 5\%$ next slide :
- Integrated Lumi syst: $\approx 2.2\%$
- . . .

- Two major source of systematics for the predicted *bbb* in signal region:
 - Systematics from bbb prediction from DATA control region
 - * compare *bbb* and *bbj* \times *P* in DATA control region;
 - use normalization in signal region;
 - ★ use fit error as systematics;
 - **②** Systematics due to extrap. from control to signal region from MC
 - ★ get ratio of ratios from MC (signal/control) and fit it;
 - ★ use fit results to correct extrapolation bias;
 - and fit errors to estimate systematics for extrapolation;
- both can be used bin per bin when computing CL's
- we can use *no man's land* in data to check extrapolation systematics and bias in data;

Preliminary: not yet optimized for $M_H > 120 \text{ GeV}!$

200 220 240 260

280 300

m_H (GeV)

180

160

Lacaprara S. (INFN Padova)

120 140

Hbb

Analysis strategy	Irigger	Selection	Background 000000000	Systematics 00	Sensitivity	Summary	Backup 0000000
Summ	nary						INFN
 Hbb ser Data dr quite we 	nilepton iven bac ell;	ic analys ckground	is presentec prediction	l; working	CMS The constant of Ris	CMS 7 5 Draft Analysis Note one in intended for CMS international and distribu- S2012/07/35 Hond Life in 1	IN AN-TI-428
ToDo • trigger e • paramet • systema predictio • HyperBa progress • Docume	efficienc rization tics (all on; in p all align s × entation	y studies ;∢ rogress ∢ ed and c (AN, eta	; in progres: for final se onsolidate; c); in progre	s ✓ nsitivity in ess ×	Search for Super- semileptonia	And the bar is a second	decaying the LHC.
• tull anal	ysis on	all mass	points; in p	rogress 🗙		≡▶ ⊀ ≡ ▶	三 つへで

Analysis strategy	Trigger	Selection	Background 000000000	Systematics 00	Sensitivity	Summary	Backup 0000000

BACKUP

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

- CMSSW 4_2_7 including JetMet suggested tags.
- AK5 ParticleFlow Jets, JEC applied:
 - L1FastJet, L2Relative, L3Absolute, L2L3Residual (only for Data)
 - ► Global Tag: FT_R_42_V20A and START42_V17 for Data and MC
 - PU treatment: PF Charged Hadron Subtraction and Area Method;
 - Loose JetId selections;
- Jet b-tagging used is Combined Secondary Vertex (CSV);
- Standard Global Muon (no isolation requirements)
- JES and JER from POG (CERN-PH-2011/102 and update JetMET presentation 9/1/12);
- BTag efficiency studies on top samples (BTV-12-001);
- Muon (non isolated) efficiency on J/ψ MUO-10-004;

Analysis strategy	Trigger	Selection	Background 000000000	Systematics 00	Sensitivity	Summary	Backup ○●00000
Num	erology	/					INFN

HLT paths	run	triggered	∫ £dt
(L1 seed)	range	events	$[{\rm pb}^{-1}]$
HLT_Mu12_CentralJet30_BtagIP			
L1_SingleMu7	163738-165633	3 027 717	183.815
HLT_Mu12_DiCentralJet30_BtagIP3D			
L1_SingleMu10	165970-172952	4 532 555	524.904
HLT_Mu12_DiCentralJet20_DiBtagIP3D1stTrack			
L1_SingleMu10	167039-173198	1 873 247	780.378
HLT_Mu12_eta2p1_DiCentralJet20_DiBtagIP3D1stTrack			
L1_Mu10_Eta2p1_DoubleJet_16_8	173236-178380	4 762 858	1944.527
HLT_Mu12_eta2p1_DiCentralJet20_DiBtagIP3D1stTrack*			
L1_Mu10_Eta2p1_DoubleJet_16_8	178420-180252	2 164 634	811.861
All		16 361 011	4245.485

Warning: still lumiCalc2.py

- Use **SingleMuon PD**, select all events passing a single muon path.
- Apply preselection (2 bjets)
- Build Turn on curves vs first and second B-jets Pt:

 $\epsilon = \frac{\text{Hbb path \& presel \& SingleMuHLT}}{\text{presel \& SingleMuHLT}}$

Here for

HLT_Mu12_DiCentralJet30_BtagIP3D and SingleMu30

• Turn-on stable wrt SingleMu threshold

Analysis strategy

Trigger Selection Background

Sensitivity

Summary

Backup 0000000

🔀 Trigger Efficiency (I)

Lacaprara S. (INFN Padova)

HLT_Mu12_DiCentralJet30_BtagIP3D

Statistics bit low but still affordable

HLT_Mu12_DiCentralJet20_DiBtagIP3D1stTrack

< 🗇 🕨

Lacaprara S. (INFN Padova)

→ 3 → 4 3

Lacaprara S. (INFN Padova)

Analysis strategy

Trigger Selection

Background

Systematics 00 Sensitivity

Summary

Backup 000000

Mass spectra, trigger corrected

HLTMu12_DicentralJet30_BtagIP3D L = 525 pb-1 2 btags HLTMu12_DicentralJet20_DiBtagIP3D1stTk L = 1002 pb-1

Applying pre-selections (2 b-tag) only: no bias in M_{ii} nor M_{bb}

A B F A B F

Image: A matrix

Left to Right:

 ϵ_B All, $N_{trk} < 10$, $N_{Trk} \ge 10$

< 67 ▶

-

Left to Right:

 ϵ_{C} All, $N_{trk} < 10$, $N_{Trk} \ge 10$

< 一型

Left to Right:

 $\epsilon_{\textit{Light}}$ All, $\textit{N}_{\textit{trk}} < 10$, $\textit{N}_{\textit{Trk}} \geq 10$

< 67 ▶

Correlation Coefficient ρ = 0.522

< 67 ▶

Use $F_{B,C}(\Delta R_{H,j_3}, |\Delta R_{j_1,j_2}|)$ only for shape: $F_{B,C}$ average, weighted to *bbj* distribution, is normalized to unity.

$$\int_{C \text{ reg. }} \frac{dN}{d\Delta R_{12} d\Delta R_{H,j3}} \cdot F_{B,C} \left(\Delta R_{H,j3}, \Delta R_{12}\right) d\Delta R_{12} d\Delta R_{H,j3} = \\ \int_{C \text{ reg. }} \frac{dN}{d\Delta R_{12} d\Delta R_{H,j3}} d\Delta R_{12} d\Delta R_{H,j3}$$

< ロ > < 同 > < 三 > < 三

< ロ > < 同 > < 三 > < 三

Image: A match a ma

(日) (同) (三) (三)

Example of signal injection and extraction $M_H = 120$ GeV