Status update on $H \rightarrow b\bar{b}$ analysis on semileptonic channel

Antonio Branca, Ugo Gasparini, Andrea Gozzelino, Tommaso Dorigo, Kostya Kanishev, **Stefano Lacaprara**, Paolo Ronchese, Mia Tosi, Alberto Zucchetta

INFN Padova

Hbb meeting, CERN, 18/11/2011

Get QCD background from data

- Major background source is QCD
- Build B-tagging matrixes for bb + j sample in control region;
- Estimate *bbb* background in signal region starting from *bbj*:

$$F(bbb) = F(bbj) \times P_b^{3rd-j}(j)$$

where

$$P_b^{3rd-j}(j) = \epsilon_b \cdot f_b + \epsilon_c \cdot f_c + \epsilon_l \cdot f_l$$

- Get $\epsilon's$ from MC and check on Data;
- and $f_{b,c,l}$ from Data (not for today's talk)
- Compare single distribution (*M*_{bb}) or MVA variable;

Image: A matrix and a matrix

- HLT trigger fired;
- At least one μ , $p_t > 15$ GeV, no isolation requirement;
- At least 3 jets
 - AK5PF, PFNoPU and L1FastJet correction, JetID loose;
 - ▶ inside |*eta*| < 2.6
 - $E_t^{(1,2)} > 25 \ GeV \ E_t^{(3)} > 20 \ GeV;$
- B-tagging: CSV (Combined Secondary Vertex);
 - thresholds: CSV > 0.8 for first two jets, CSV > 0.7 for third;
- for final analysis
 - The first 3 jets, sorted in E_t , has to pass CSV threshold as above;
 - µ must be inside one of the first two jets;
- Still to be optimized

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Dataset	$\int \mathcal{L} dt [pb^{-1}]$		num. triggers	
	Delivered	Selected	All P.D.	Just Hbb HLTs
May10ReReco-v1	248.859	215.733	9'267'331	3'370'074
PromptReco-v4	1037.	930.211	28'130'919	754'129
Run2011A-05Aug2011-v1	439.810	336.590	6'295'087	806'901
PromptReco-v6	510.046	543.693	8'008'055	1'082'103
Run2011B-PromptReco-v1	2833.	2478.	30'527'184	still running
Total	5069.72	4414.173	82'228'576	6'013'207

All numbers to be checked

3

イロト イ団ト イヨト イヨト

CMS	Build	а	Discriminator
-----	-------	---	---------------

Compare

- Compare several distributions for signal H(M = 120 GeV) and background QCD MC
- Cannot rely on QCD well enough to use directly the distributions or the discriminator to compare with data
- But we can find a control region signal-free.
- Can use data in control region to train B-tagging matrices and check the prediction from *bbj* to *bbb*
- Can be used also as MVA analysis once the background distrubtion are obtained from data $(bbj \rightarrow bbb)$.

(日) (同) (三) (三)

・ロト ・回ト ・ヨト

Discriminator variables II

∃ ► < ∃</p>

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

___ ▶

B-matrices and co.

- Get f_b , f_c , ϵ_b , ϵ_c and ϵ_l from MC;
- Separately for:
 - bjj vs bbj (first jet b-tag, look at second one);
 - jbj vs bbj (second jet b-tag, look at first one);
 - bbj vs bbb (first two b-tags, look at third);
- Many different parametrization has been tried
 - ▶ vs E_t, |η|;
 - vs E_t , ΔR ;
 - vs E_t , ΔR separating B, C and light;
 - vs E_t , ΔR and N_{trk} ;
 - ▶ vs E_t, Δη;
 - ...
- Will show only some example

3

イロト イ団ト イヨト イヨト

- 一司

For CSV, Data and MC b-tagging efficiency agrees within $\sim 5\%$ or better:

Top Selection

- Good, isolated muon $p_t > 25 \ GeV \ (\Sigma p_t^{trk} + \Sigma E_t^{em} + \Sigma E_t^{had})/p_t^{\mu} < 0.1$
- exactly 4 jets $E_t > 25$ and $|\eta| < 2.6$ JetID loose, of which exactly 2 B-jets (CSV > 0.8).
 - $W \rightarrow jj$ from the two non-b jets
 - $t \rightarrow bW \rightarrow bjj$ from $W \rightarrow jj + b$ (combinatorics not resolved, $\times 2$ candidates)
 - $t \rightarrow bW \rightarrow b\mu\nu$ from μ and MET.

Looking at $t\bar{t}$ yield in data: only RunA Need to select jets w/o any b-tag requirement to check b-tagging efficiency

Mass of: $t \rightarrow b \mu \nu$, $W \rightarrow jj$, $t \rightarrow b jj$ (MC/RunA)

Hbb

イロト 不得 トイヨト イヨト 二日

INFN

P_t of first/second B-jet/Non-B-jet

16 / 27

- Typically p_t ordering is the following: $Bjet^{(1)} > Jet^{(1)} > Bjet^{(2)}$
- Look at second and forth jet (sorted in E_t) as coming from $W \rightarrow jj$
- Can do better: will try simultaneoud t and W mass fit (as in PAS sec.9).

CERN 18/11/2011

Hbb

Lacaprara S. (INFN PD)

found a last minute bug in analogous data distributions

Test of ϵ_l/ϵ_c on W first jet (MC)

Lacaprara S. (INFN PD)

INFN

- On QCD sample (MC), check $P_b(j) = f_b \epsilon_b + (1, -f_b) \cdot \epsilon_q$ on bjj samples;
- compare M_{jj} distribution (two highest j) in sample bbj vs bjj ⊗ P_b(j^{2nd});
- likewise for *bbj* vs *jbj* \otimes $P_b(j^{1st})$;
- bbb vs $bbj \otimes P_b(j^{3rd});$
- bbb vs $bbj \otimes P_b(j^{3rd});$
 - Also in Data, only Control Region;

3

イロト イポト イヨト イヨト

Still VERY preliminary Optimization of parametrization is still underway Signal region looks better than control one ...

Lacaprara S. (INFN PD)

23 / 27

CERN 18/11/2011

- Control Region Only
- Reminder f_B still from MC
- $\bullet \ \ ScaleFactor \sim 1.3$
- VERY PRELIMINARY!

Control Region for three different HLT Path 1b, 2b, 2b_eta2.1

NFN

- MSSM: $M_H = 120 \text{ GeV}$, tan $\beta = 30$;
- Sensitivity for ~ 0.5 fb⁻¹ (available MC);
- QCD yield normalized to Data (control region);
- Only statistical errors;
- Can exclude up to $\lesssim 4 \times \sigma_{MSSM, \tan\beta=30}$
- Actual $\int \mathcal{L} dt$ collected in 2011 \sim 4.4 fb^{-1} ;
- Only *M_{bb}*, no MVA analysis (yet);

∃ ► < ∃ ►</p>

Lacaprara S. (INFN PD)

CERN 18/11/2011 26 / 27

э

• To Be Done

- Turn-on curves for Trigger;
- ▶ Get *f_b* from data;
- Check $\epsilon_{c,l}$ from $W \rightarrow jj$ on Data and improve methodology;
- Optimize control/signal region;
- Detailed comparison (predicted vs measured) of kinematical variables in control region
- Try MVA analysis with predicted spectra;
- Sensitivity including systematics;
- ► ...
- Analysis Note in progress
- Will try to have updates for CMS week