

HLT Workshop

Dimuons trigger

Stefano Lacaprara, Istituto Nazionale di Fisica Nucleare, Padova.

HLT Workshop, *CERN 21 july 2000*

Outline

- \diamond dataset
- ♦ Generated rates
- \diamond Topology
- \diamond L1 & L2 rates symmetric and asymmetic cut
- ♦ L1 & L2 Efficency
- $\diamond H \rightarrow WW \rightarrow 2\mu$ selection
- \diamond Conclusion

Data Sets

Di-muon topology:

Dataset	description	N. events	$\int {\cal L} dt ~[{ m nb}^{-1}]$
MB2mu	$\mathrm{MB} \rightarrow 2\mu + X \; p_t^{\mu 1} > 8 \; \mathrm{GeV}, p_t^{\mu 2} > 4 \; \mathrm{GeV}$	61911	72.84
MBmix_mu2	2 single muon MB events overlapped (same BX)		
	$p_t^{\mu 1} > 8 \ \mathrm{GeV}, p_t^{\mu 2} > 4 \ \mathrm{GeV}$	44237	5.79
WZ2mu	$W, Z \rightarrow 2\mu + X$	9999	$6.793\cdot 10^5$
tt2mu	$t\bar{t} \to 2\mu + X$	9378	$1.624\cdot 10^5$
Z_mu	$Z ightarrow 1 \mu$ (mostly $Z ightarrow 2 \mu$)	48981	898.
HWW2m	$H \to WW \to 2\mu$		
	($m_H = 120 { m GeV}$)	5000	$1.934\cdot 10^8$
	($m_H = 140 { m GeV}$)	5000	$6.034\cdot 10^7$
	($m_H = 160 \mathrm{GeV}$)	5000	$3.589\cdot 10^7$
	($m_H=200{ m GeV}$)	5000	$6.194\cdot 10^7$
	($m_H = 300 \mathrm{GeV}$)	5000	$1.209\cdot 10^8$

Rates

Tresholds	L1 ϵ	L2.2 <i>ϵ</i>	
$Pt_{\mu 1} > 8 Pt_{\mu 2} > 4$	145 Hz	108 Hz	
$Pt_{\mu 1} > 10 \ Pt_{\mu 2} > 5$	87 Hz	50 Hz	
$Pt_{\mu 1} > 10 Pt_{\mu 2} > 10$	24 Hz	8 Hz	
$Pt_{\mu 1} > 15 Pt_{\mu 2} > 10$	19 Hz	6 Hz	

Efficency vs $\Delta\eta$ and $\Delta\phi$

If 2 muons close in $\eta - \phi$ efficency decrease. Important for muons coming from same b (or c) cascade (ex $t\bar{t} \rightarrow 2\mu + X's$)

Regional Efficency

$Z ightarrow \mu \mu$								
$Pt_{\mu}(1,2) > 10 \text{GeV}$								
	Barrel	Overlap	Endcap					
	$ \eta < 0.8$	$0.8 < \eta < 1.2$	$ \eta > 1.2$					
Barrel	14	14	33					
	94	92	91					
	92	78	80					
Overlap		3	16					
		89	87					
		63	73					
Endcap			20					
			87					
			84					
Fraction of events % L1 ϵ % L2.2 ϵ %								

Efficency

Dataset	$Z \rightarrow$	$\mu\mu$	$t\bar{t} \rightarrow$	$\mu\mu + X$
cut	L1 ϵ	L2.2 ϵ	L1 ϵ	L2.2 ϵ
$Pt_{\mu 1} > 8 Pt_{\mu 2} > 4$	92%	75%	87%	78%
$Pt_{\mu 1} > 10 \ Pt_{\mu 2} > 5$	92%	83%	87%	76%
$Pt_{\mu 1} > 10 \ Pt_{\mu 2} > 10$	90.5%	80.6%	84%	72%
$Pt_{\mu 1} > 15 Pt_{\mu 2} > 10$	91%	80.0%	83.5%	72%

$H \to WW \to 2 \mu$ selection

Let's look at true signal: $H \to WW \to 2\mu$

Ask at L2.2 :

2 Opposite charged muons with $Pt_1>30$ & $Pt_2>20$

Look at background rate reduction and Higgs efficency (vs Minv $\mu^+\mu^-$)

$H \rightarrow WW \rightarrow 2\mu$ selection

Conclusion

- ♦ A large number of evens with di-muons topology has been produced;
- \diamond L1 & L2.2 rate has been shown for all muon system;
- Problem with inefficencies on overlap and endcap for L2.2, should we use also RPC for L2.2, how?;
- ♦ Tools are available for studing reduction based on event topology;