Update on QCD FeedThrough for $W \rightarrow \mu\nu$ analysis

Maria Cepeda ¹, **Stefano Lacaprara**²

¹CIEMAT (Madrid) ²INFN Padova

EWK muon meeting CERN, 21 May 2009

Feed through of low p_t muons ••••••	Quality Cut 000000	Trigger Selection	Conclusion	backup O
The problem				

TMass (using PfMet) after all cuts including InclusivePPmuX

Feed-through of low pt muon *dominates* the signal

Feed through of low p_t muons 0000	Quality Cut 000000	Trigger Selection	Conclusion	backup O
Origin of the reconstructed muon				

Origin of the reconstructed muons

- Search for matched generated muons in ΔR cone not so easy
- \bullet these are badly reconstructed muons, ϕ and η can be rather far from generated;
- after manual scan, just search for a generated μ with $p_t > 1~Gev$, anywhere
- in most of the case only 1 generated muon is present;
- $\Delta\eta$, $\Delta\phi$ wrt reconstructed shows that is the right one.

Selected 900 events which pass all cuts: all of them has a generated μ with $p_t > 1$ Gev.

Feed through of low p_t muons 00000	Quality Cut 000000	Trigger Selection	Conclusion	backup O
Origin of the reconstructed muon				

$\Delta\eta$, $\Delta\phi$ reco-gen muon

• $\Delta\eta, \phi$ is rather good: in most of the case I'm looking at the right generated muon.

4 / 24

Implies/Meanfercies

Feed through of low <i>p</i> ^t muons ○00●0	Quality Cut 000000	Trigger Selection	Conclusion	backup O
Origin of the reconstructed muon				
Origin of the muo	ns			

• 600/909 = 2/3 of the muons come from π/K DIF • 309/909 = 1/3 of the muons come from c/b!

Feed through of low <i>p</i> ^t muons ○000●	Quality Cut 000000	Trigger Selection	Conclusion	backup O
Origin of the reconstructed muon				
C				

Low Pt muons NB: Reco $\mu p_t > 25 \text{ GeV}$

> investor, Melanderoie. y Tacobjos

Feed through of low <i>p</i> ^t muons	Quality Cut	Trigger Selection	Conclusion	backup O	
Cut description					
Quality Cut to reject these muons					

- TMLastStationOptimizedLowPtTight Good for Mu station
- $\chi^2/NDoF < 10$ Good reconstruction
- $vtx_{\mu}.rho < 20 \ cm$, $|vtx_{\mu}.Z| < 20 \ cm$ from Primary vtx
- $d0_{\mu} < 2 mm ditto$

Study effect of the cuts for π/K vs b/c population.

Feed through of low <i>p</i> ^t muons	Quality Cut ○●○○○○	Trigger Selection	Conclusion	backup O
PID after cut				

PID of muon's mother after cuts

- Vertex cut rejects more b/c than π/K ;
- χ^2 cut rejects mostly π/K ;
- π/K should come from decay in flight!

 Feed through of low pt muons
 Quality Cut
 Trigger Selection
 Conclusion
 backup

 00000
 00000
 00000
 0
 0

χ^2 and vtx cuts effect on μ distance from IP

Feed through of low <i>p</i> ^t muons 00000	Quality Cut	Trigger Selection	Conclusion	backup O
Muon specs after cut				
u distance from l	P			

For Global, OuterTrack and InnerTrack
mu->vertex().rho();
mu->outerTrack()->vertex().rho();
mu->innerTrack()->vertex().rho();

100

hits

Muon # hits Muon station

10

Feed through of low p_t muons 00000

Quality Cut

Trigger Selection

Conclusion

backup 0

QCD rejection after quality cuts

TMass plot after μ quality cut

- As already shown, with μ quality cuts InclusivePPmuX is reduced at the level of InclusivePPmuPt15 dataset.
- The two dataset partially overlaps for $P_t^{\mu} > 15~GeV$, so using both can give double counting;
- Also, InclusivePPmuPt15 background is reduced.

Feed through of low p_t muons 00000

Quality Cut

Trigger Selection

Conclusion

backup 0

Effect of trigger selection on QCD rejection

Feed-through for Calo vs PF Met

- PFMet TMass shows excess of events at high MT;
- Selected events distribution is very different!
- High MT (PFMet) events survive $W \rightarrow \mu \nu$ selection;
- Killed by trigger selection;

 Feed through of low pt muons
 Quality Cut
 Trigger Selection
 Conclusion
 backup

 00000
 00000
 00000
 0
 0

Effect of trigger selection on QCD rejection

MuonId cut effect on feed-through

- black global pt, red innerTrack pt
- MuonID cuts reduce feed-through;
- After $W \rightarrow \mu \nu$ selections, few events survives (using CaloMet)

 Feed through of low p_t muons
 Quality Cut
 Trigger Selection
 Conclusion
 backup

 00000
 00000
 00000
 0
 0

Muonld cut vs HLT_Mu15 trigger

- MuonID cuts has no effect on triggered sample;
- Trigger act like a quality cut.

Feed through of low <i>p</i> ^{<i>t</i>} muons	Quality Cut 000000	Trigger Selection	Conclusion	backup O
InnerPt vs GlobalPt				
Global vs Inner μ_i	ot			

Difference in p_t gives difference in M_T spectrum.

Feed through of low <i>p</i> ^t muons	Quality Cut 000000	Trigger Selection	Conclusion	backup O
Conclusions				

Low p_t muons feed-trough

- FeedThrough μ comes from π/K (2/3) and c/b (1/3) decays;
- Quality cuts on muon (χ^2 and Primary Vertex) are complementary;
 - Something better for primary vertex cut?
- $\bullet\,$ The cuts kill FeedThrough μ and reduce QCD background.

HLT_Mu15 trigger selection

- FeedThrough reduced when using HLT_Mu15 && μ POG MuonID cuts;
- Using CaloMET of PFMet changes the amount of FeedThrough
- For low momentum, using GlobalPt or InnerPt makes difference: worth investigating.

Feed through of low <i>p</i> ^t muons	Quality Cut 000000	Trigger Selection	Conclusion	o O

Backup

. . .

Feed through of low p_t muons Quality Cut rrigger Selection Conclusion backup rrow ooooo

Cuts are complementary

Feed through of low p_t muons 00000

Quality Cut 000000 Trigger Selectio

Conclusion

backup

χ^2 and vtx cuts effect on μ D0

Feed through of low p_t muons 00000

Quality Cut 000000 Trigger Selection

Conclusion

backup

χ^2 and vtx cuts effect on μ $D0/\sigma d0$

Muon D0/σ{D0}

Muon D0/σ{D0}

Feed through of low <i>p</i> ^t muons	Quality Cut 000000	Trigger Selection	Conclusion	o backup
μ D0 vs $R(\mu_{vtx})$				

Feed through of low p_t muons 00000	Quality Cut 000000	Trigger Selection	Conclusion	backup ●
$W ightarrow \mu u$ cut reminder				

Reminder of cut applied for $W \rightarrow \mu \nu$ analysis

Muon cut

- GlobalMuon;
- Muon $p_t > 25 \ GeV;$
- Muon $|\eta| < 2;$
- Muon isolation $\sum p_t/p_t^{\mu} < 0.09;$

Event cut

- Acoplanarity $|acop| < 1 \text{ rad } (acop \in [-\pi, \pi]);$
- Cut on Z (2 μ p_t > 20 GeV);
- Reject top not used;
- MET cut not used;

Inglics/Malantero