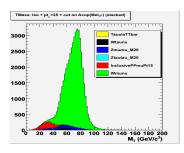
$Z \to \mu\mu$ rejection in $W \to \mu\nu$ analysis

Stefano Lacaprara

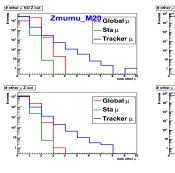
INFN Padova

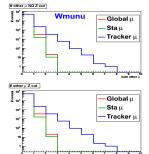

EWK Muon meeting CERN, 21 May 2009

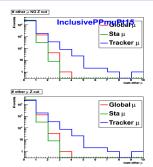
Motivation

With PFMet the most important background is $Z \rightarrow \mu\mu$

See Massimo's talk at 07/05/2009 EWK μ meeting


Channel	Counts	Counts (> 50GeV)	Total
$W \rightarrow \mu \nu$	45887	43024	43024
t₹	110	106	
W ightarrow au u	809	584	
$Z o \mu \mu$	2173	1489	2341
Z ightarrow au au	169	59	
QCD	2546	103	

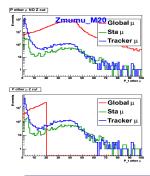

Actual $Z \to \mu\mu$ selection

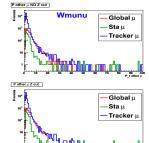

Reject events with > 2 global μ with $p_t > 20 \text{ GeV}$

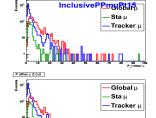
How many "other" μ 's do we have?

of "other" μ found in the event, excluding the leading

Global, StandAlone, Tracker exclusive!


Bottom plot are after Z selection (as explained before)


 \sim 20% of Z events have still a second global μ after Z rejection



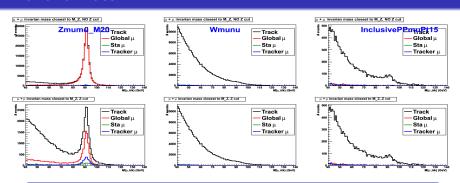
Second muon momentum

P other u NO Z cut

 p_t of "other" μ found in the event, excluding the leading

Global, StandAlone, Tracker exclusive!

Bottom plot are after Z selection (as explained before)

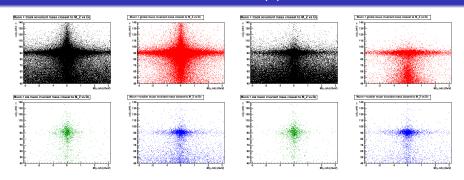

We can cut at lower p_t for second μ

Cut also on non global μ at high p_t

Invariant masses

Invariant Mass

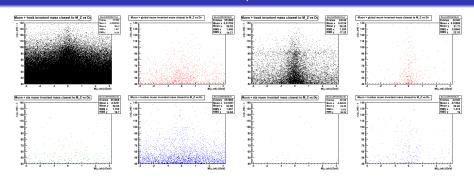
$\overline{M_{\mu,\mu}}$ of leading with "other" opposite Q μ or track found


Select μ or track by M_{inv} closest to M_Z Generic track, (Global, StandAlone, Tracker exclusive) Bottom plot are after Z selection (as explained before) Clear evidence of Z peak in Z sample for global μ and track In QCD, peak in $M_{u,trk}$ due to bias and combinatorics

Invariant masses

Motivation

Invariant Mass Vs DPhi for $Z \rightarrow \mu\mu$


 $M_{\mu,\mu}$ vs $\Delta\phi-\pi$ of leading with "other" opposite Q μ or track

Generic track, (Global, StandAlone, Tracker exclusive) Left plots are before Z selection, right ones after Clear evidence of Z peak in Z sample for global μ and track $\Delta \phi = 0$ means μ back to back with other $\mu/track$.

Motivation

Invariant Mass Vs DPhi $W \rightarrow \mu \nu$ and QCD

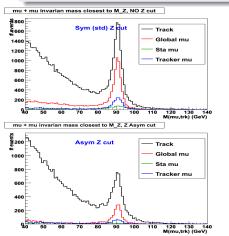
 $\overline{M_{\mu,\mu}}$ vs $\Delta\phi-\pi$ of leading with "other" opposite Q μ or track

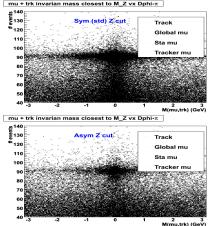
Generic track, (Global, StandAlone, Tracker exclusive)

Left plots are $W \to \mu \nu$ selection, right ones QCD

Almost no peak (but QCD with track, as seen before)

An other handle to reduce $Z \rightarrow \mu\mu$ signal

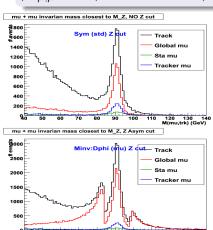


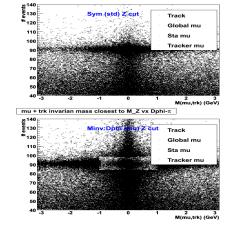

How many events can we reject?

Asymmetric p_t cut

First μ : global and $p_t > 20 \text{ GeV}$;

Second μ : global or standalone or tracker with $p_t > 10 \text{ GeV}$;



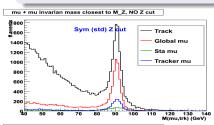

Cut in M_{inv} : $\Delta \phi$ plane

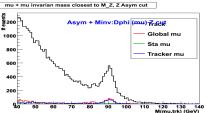
Consider only global-global μ pairs;

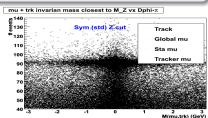
$$|M_{\mu,\mu} - M_Z| < 7.5 \text{ GeV \&\& } |\Delta \phi_{\mu,\mu}| < 1;$$

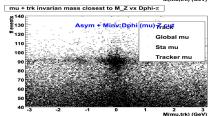
M(mu,trk) (GeV)

mu + trk invarian mass closest to M_Z vx Dphi-π

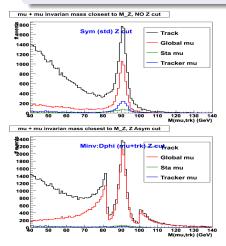


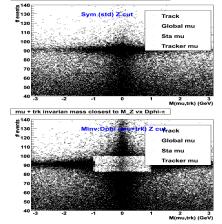

Cut in M_{inv} : $\Delta \phi$ plane + Asymmetric p_t cut


Consider only global-global μ pairs;


$$|M_{\mu,\mu} - M_Z| < 7.5 \text{ GeV \&\& } |\Delta \phi_{\mu,\mu}| < 1;$$

 $Pt_{\mu^1} > 20 \text{ GeV\&\&} Pt_{\mu^2} > 10 \text{ GeV};$

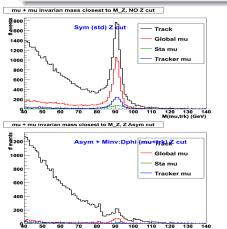


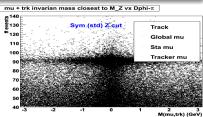


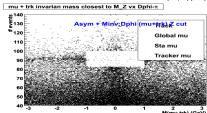
Cut in $M_{inv}:\Delta\phi$ plane

Consider global and any other track (opposite charge) pairs; $|M_{\mu,\mu}-M_Z|<9~{
m GeV}$ && $|\Delta\phi_{\mu,\mu}|<1$;

mu + trk invarian mass closest to M Z vx Dphi-π




Cut in M_{inv} : $\Delta \phi$ plane + Asymmetric p_t cut


Consider global and any other track (opposite charge) pairs;

$$|M_{\mu,\mu} - M_Z| < 9 \text{ GeV && } |\Delta \phi_{\mu,\mu}| < 1;$$

 $Pt_{\mu^1} > 20 \text{ GeV\&\&} Pt_{\mu^2} > 10 \text{ GeV};$

Cut effect on signal

Signal to background ratio

NB: $W \to \mu \nu$ with only \sim 20% statistics (job still running...) Only $W \to \mu \nu$, QCD and $Z \to \mu \mu$ analyzed, for "other" background kept previous numbers.

Channel	# ev	$\#$ ev $M_T > 50 \text{ GeV}$	Total	S/√B		
MT > 50 GeV Sym p_t cut						
$W \rightarrow \mu \nu$	47983	44985	44985			
$Z \rightarrow \mu\mu$	2089	1432				
QCD	2524	103	2284	$\frac{S}{\sqrt{R}} = 941$		
Other	1088	749		VB		
Asym p _t cut						
$W \rightarrow \mu \nu$	47928	44933	44933			
$Z \rightarrow \mu \mu$	1764	1339				
QCD	2496	100	2188	$\frac{S}{\sqrt{B}} = 960$		
Other	1088	749		V B		
Asym $p_t + M_{inv} : \Delta \phi_{\mu,\mu}$ cut						
$W \rightarrow \mu \nu$	47926	44931	44931			
$Z \rightarrow \mu\mu$	1733	1330				
QCD	2496	100	2180	$\frac{S}{\sqrt{R}} = 962$		
Other	1088	749		V B		
Asym $p_t + M_{inv} : \Delta \phi_{\mu,trk}$ cut						
$W \rightarrow \mu \nu$	47448	44483	44483			
$Z \rightarrow \mu\mu$	1643	1298				
QCD	2469	97	2143	$\frac{S}{\sqrt{B}} = 960$		
Other	1088	749		V B		

- Limited gain in S/\sqrt{B}
- ullet Reduce Z events by $\sim 20\%$ but only by $\sim 10\%$ in signal region $M_T > 50~{
 m GeV}$
- Cut $Z \to \mu\mu$ events in Z peak, but in most events second μ is not seen.

Conclusion

- Actual $Z \rightarrow \mu\mu$ rejection is too loose;
- Can be tighten with an asymmetric p_t cut, including also lesser quality muon for $2^{nd} \mu$;
- Also can cut on *Minv vs* $\Delta \phi$.
- ullet Anyhow, the overall gain is limited: most of rejected $Z
 ightarrow \mu \mu$ are outside the signal region;
- $Z \to \mu\mu$ irreducible (?) background [2nd μ is not seen] is unaffected.

