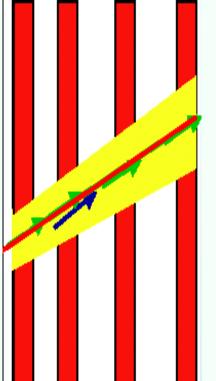
DDD workshop on reconstruction,

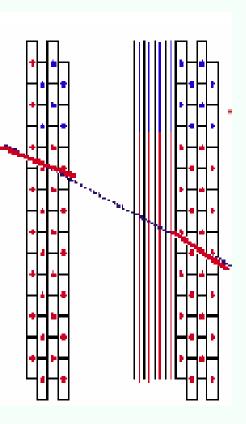
CERN, 8 July 2002

Muon - Lvl3 Tracks

Stefano Lacaprara, INFN and Universitá di Padova

Outline:

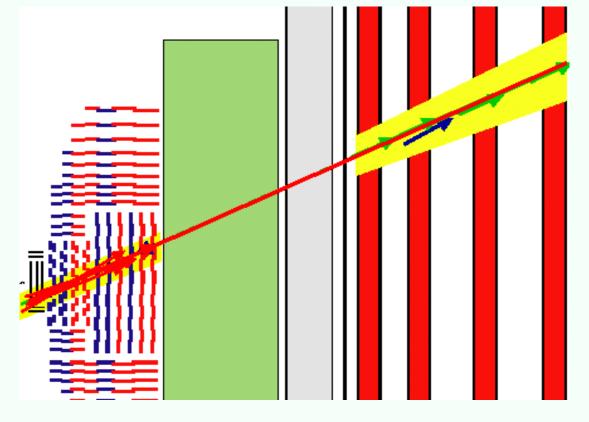

- ➤ What we do,
- what do we need for local reconstruction
- and global one
- summary/conclusion


0

What is Muon reconstruction (L2 L3):

- Start from seed: L1 output (or internal);
- Define a region of interest around the seed;
- Start local reconstruction on chamber inside the region of interest (segments or hits as RecHits)
- Build trajectory (inside-out) using RecHits from the compatible chamber;
- Navigate to find more compatible chambers and RecHits;
- The backward kalman filtering outside-

j,



What is Muon reconstruction (L2 L3):

- Propagate trajectory from innermost Muon station to Tracker region (outer layer or IP);
- Open windows and define tracker region of interest;
- Create one or more seeds for each L2 Muons;
- Reconstruct tracker track starting

from these seeds

 propagate trajectory to muon station and use the muon RecHits to improve trajectory;

What do we need for Local Reconstruction:

* The RecHits inside DT, CSC, and RCP chambers are build according to

rather complex algorithms

- ★ DT hits:
- $\rightsquigarrow \text{Resolution} = \text{Res}(B, \theta, (t), \ldots)$ \rightsquigarrow Hit position with DistanceFromWire=DriftVelocity $(\vec{B}, \theta, (t), \ldots) \times$ DriftTime
- * CSC Hits:
- \rightsquigarrow Fit of near-by strips signal with a proper charge distribution (Gatti): position and error from fit result
- \star RPC Hits: clusterization of near strips.
- \star In any case a lot of parameters are used in the hit reconstruction \Longrightarrow suitable for storing in DDD

ş	<u></u> {		ş	* Se
$V = V_0 + (a + b \cdot B_\perp) + (c + d \cdot B_\parallel) + (e + f \cdot \theta) + \dots$ \rightsquigarrow Where should we put the $(V_0, a, b, c, \dots, f, \dots)$ constants?	 So it should be possible to access the parameters given a chamber ID <i>formula parameters</i>: eg. in DT the DriftVelocity may be parametrized like (just to give a concrete example) 	pressure, etc This can change the behavior of a chamber, and so the reconstructior algo (at least the algorithm parameters).	✓ Local which may change from chamber to chamber: for the real CMS, eg. HV different for detectors with some problem, different gas	 ★ Several type of <i>"constant"</i> → Global constant, unique for all the chambers (now ~all);

- In the DDD: correct place for all the "numbers", but the numbers are strictly related to a specific algo (i.e. formula), so formula in maintain! one place (code) and coefficient in an other (DDD): probably hard to
- In the code: numbers close to the code they are related to, so easy to maintain but hard-coded!
- ★ How to access to chamber specific parameters? Hierarchical access: parameters which can be "local" but are shared by many chambers? first get the chamber, then the params of the chamber? how to deal with
- ★ User customization: many numbers are now configurable via .orcarc, kind of user configuration BUT taking the default value from the DDD. and the default value is in the code: it could be a good idea to allow for this An easy SimpleConfigurable↔DDD interface can be useful

- ★ Status of the detector, cells, CMS, ...
- ★ Dead, noisy channel, defined according "run number"
- ★ Particular condition of the chambers/detectors (HV, gas, read-out, ...)
- \star All local reconstruction is done the detector reference frame, so, at this stage, no particular information about position of detector inside CMS is
- \star Position of sub-detector parts in the detector reference frame, already needed
- available when the detectors are built (eg. SL to DT chamber frame transformation)
- ★ Alignment of sub-detector parts inside a detector: eg SuperLayer in a DT, layer in CSC, ...

What do we need for Global Reconstruction:

- Local reco is done in local frame, transformation to global is done by
- DetUnit, available once the DetUnit (i.e. the detector) is built;
- No explicit use of geometry related stuff is used during the global reco: all is delegated to Det, DetUnit, DetLayer.
- The navigation is performed using the DetLayer (collection of DetUnits): case the position of the DetUnit is taken from the DetUnit itself. different strategies (navigation school or η based compatibility) but in any
- The alignment information must be available for each DetUnit eventually the wheel, then the chamber inside the sector, ... with proper hierarchy: a whole wheel/disk is displaced, the a sector inside
- Some number is used also in the global reco (now mostly hard-coded or SimpleConfigurable), less than in the local reco
- > Many cuts of various type: χ^2 cuts, number of hits, NOT for DDD (or yes?)

7

- Most important point now: extrapolator in the Muon region is **GEANE**
- This means that the GEANT3 geometry (namely iron position, magnetic trajectory field map, ...) must be available to GEANE to proper extrapolate the
- A future substitute can be directly interfaced to DDD geometry, but it's unlikely that GEANE will ever be
- We must guarantee that the Geant3 geometry is exactly the same as the DDD one:
- not hard if the DDD is build from the cmsim tz, not so easy is the DDD

input is an other.

Summary-conclusion

- DDD perfect place to store many parameters now scattered all over the code
- Parameters may be specific for a specific detector or global;
- where to put algorithm formula parameters?
- User customization via .orcarc
- Geometric position to go from local to global frame;
- Alignment information;
- Detector status information;
- GEANE: until we use it, GEANT3 geometry must be available.