

Center of Excellence MIUR-Univ. Padova Workshop

Padova, Friday 29 October 2004

Toward a WoldWide Physics Analysis Framework for LHC Experiment

Stefano Lacaprara

Stefano.Lacaprara@pd.infn.it

INFN and Padova University

Stefano Lacaprara – Center of Excellence MIUR-Univ. Padova Workshop, Padova, Friday 29 October 2004 – Toward a WoldWide Physics Analysis Framework for LHC Experiment – p.1/21

- What is analysis,
- What is needed fo analysis: Data and resources,
- Different approaches,
- Possible Workflow,
- Concluding comments

- An analysis is
 - a user-defined job,
 - using private code
 - on top of some existing framework,
 - which access available data
 - and produce some kind of output
 - which contains a higher level of data reduction compared with the input.
 - In general analysis is a chaotic, non-organized task, carried on concurrently by many independent users.

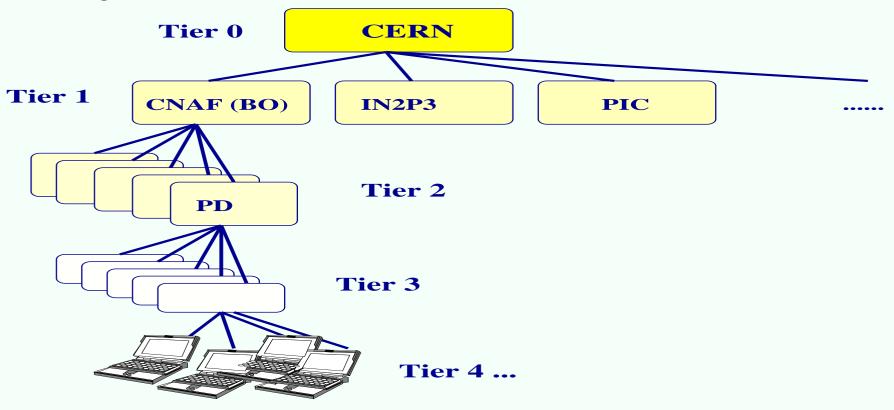
- Data access
- Resources
- Framework for application
- Infrastructure to prepare job (including job cluster - see after -)
- Monitoring and bookkeeping
- Output management, retrieval, publication,...

Data

- How much data to analyze for a typical HEP application?
- Atom is "event": p p collision
- I event ~ 1 MB (RawData) + ~ 1 MB higher level reconstructed objects
- Resources to reconstruct one event:
 - First level reconstruction ~ min/ev, 1/2 GB RAM, output stored
 - Higher level reconstruction typically faster
- Not really much! So, where is the problem?

How many events do we analyze??

- LHC: 40 *MHz*
- ${\scriptstyle {\rm \bullet}}\,$ Trigger first, on-line selection- down to $\sim 100\;Hz$
- 1 LHC year: $10^7 s$
- 10^9 events per year $\Rightarrow 1 PB == 1000 TB$
- Plus simulated events... Today we have $\sim 10^8 \text{ simulated events}$
- Moreover not just one user, but $\mathcal{O}(1000)$


How to deal with this??

Data (III)

- Distributed analysis approach (GRID)
- Multi Tier hierarchical structure for data and analysis
- Each tier-n contains less and less data: used by regional users

- Multi-tier data
 - Raw data (as read-out from CMS)
 - Reconstructed hits, calorimeter cells, ...
 - Reconstructed high level objects (tracks, clusters, ...)
 - Physical objects (electrons, muons, jets, ...)
 - Composed physical jets ($Z \rightarrow \mu\mu$, $H \rightarrow ZZ\mu\mu ee$, ...)
 - Physical distribution (histograms, ...)
 - **_** ...
 - Publications!
- Different physics analysis access different data tier
- In addition: non event data (calibration, alignment, geometry...)
- Data Provenance
- Crucial aspect! Must know always how a particular event have been processed, reconstructed, which calibration, which reconstruction program, version etc...

- Typical physicist access data at Dataset level
- Dataset Key element for data model: collection of events with common feature (eg taken in a given period, pre-selected with given topology, etc...)
- Need to follow abstract user request ("give me all event with 4 muons in the final state") down to real data
- Data is distributed in files, user does not want to knows about it, want to access events, or event collection
- Large use of MetaData at various level to define abstract information about data to answer user request
- Multi level catalogs to identify which files (or fraction of) will be actually accessed by application
 - Dataset catalog: abstract, user oriented
 - File catalog: low level, application oriented

Distributed Data

- Big complication comes from data distribution approach!
 - Data can be anywhere (Tier-0, Tier-1,2,n)
 - Data is typically replicated in different location (also for redundancy)
- For effective usage of distributed resources and data need a match between the two
- Resource Broker accept abstract user request and match the request with available resources (computing elements CE) and data availability (storage element SE)
- enforce a soft locality of data: send jobs close to the data
- Soft: sometime is better to move data to job... Big problem in balancing the two approaches!
 - User may want to replicate data for efficient use (laptop)
 - Need Replica tools and catalogs

Stefano Lacaprara – Center of Excellence MIUR-Univ. Padova Workshop, Padova, Friday 29 October 2004 – Toward a WoldWide Physics Analysis Framework for LHC Experiment – p.10/21

Access to resources

- GRID middle-ware
 - Remote access, authorization, authentication, ...
- How to use the resources (CE)?

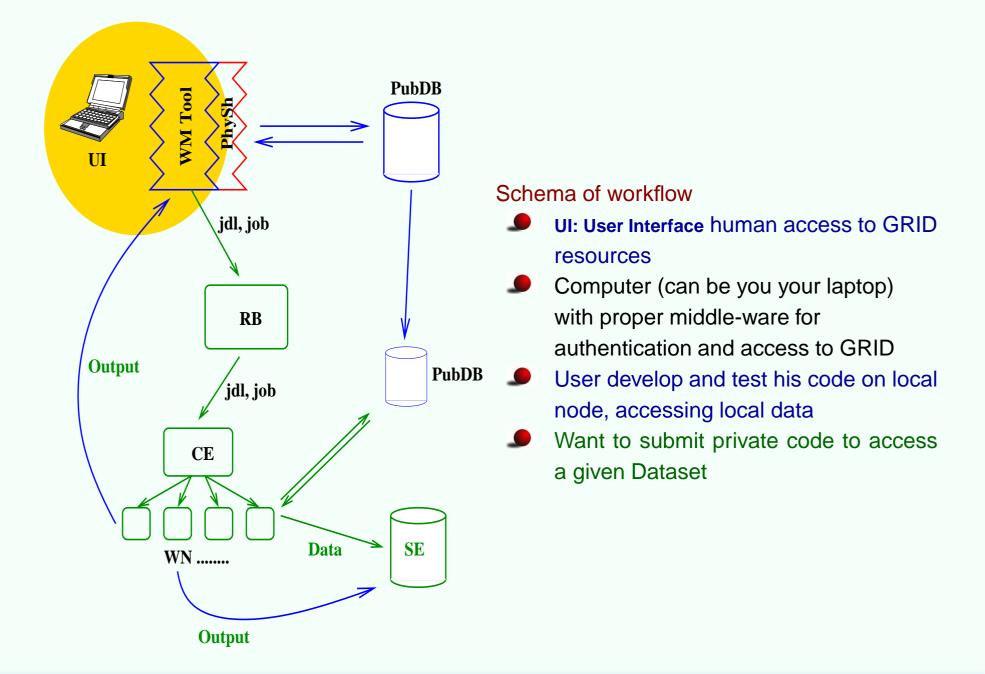
- Paratrooper approach
- The job carries with him everything which is needed
- Data, software, infrastructure, environment,...
 - How much is needed?

- Pre-allocation approach
 - Distribute data on Tier-n according to some schema and priority
 - Pre-install on remote resources all the infrastructure analysis job will need (sw, env, ...)
 - Publish info about resource availability so that resource broker can match offer and domand
 - Send with job only your analysis application
- Pilot approach
 - Don't trust fully what resource publish...
 - Small testing application lands on remote resources
 - Check if everything is ok, prepare environment for true application
 - Pull real analysis application and run it

Job clustering

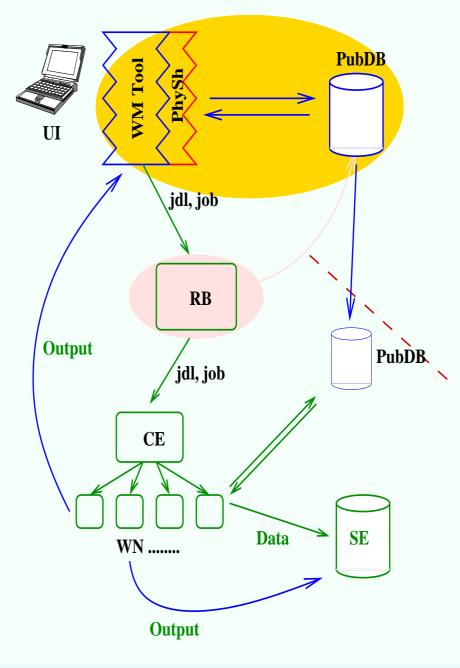
- Clustering (aka "poor man parallelization")
 - Events are independent
 - Analysis job access many event can analyze/reconstruct them independently and then merge the results
 - Effective use of resources split the dataset in small chunks
 - Analyze every chunk with independent CPU (also on different site!)
- Do use large farm of processors (with common network and data storage) rather than large parallel processor

Job clustering

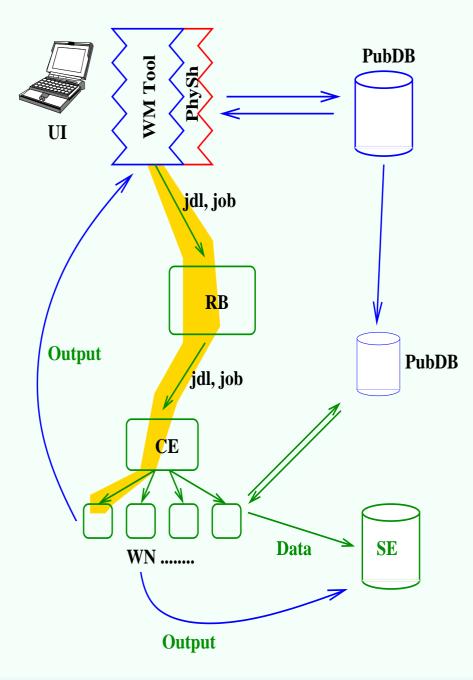


- Parallel analysis of single event not pursued
 - CPU time/event not so big!
 - Event cannot be easily separated in independent sub-events
 - Cross link between sub-events important
 - Big fluctuation in CPU time for reconstruction/analysis of sub-events
 - Felt as "too complex" for a physicist-lent-to-computer-science approach...

Workflow

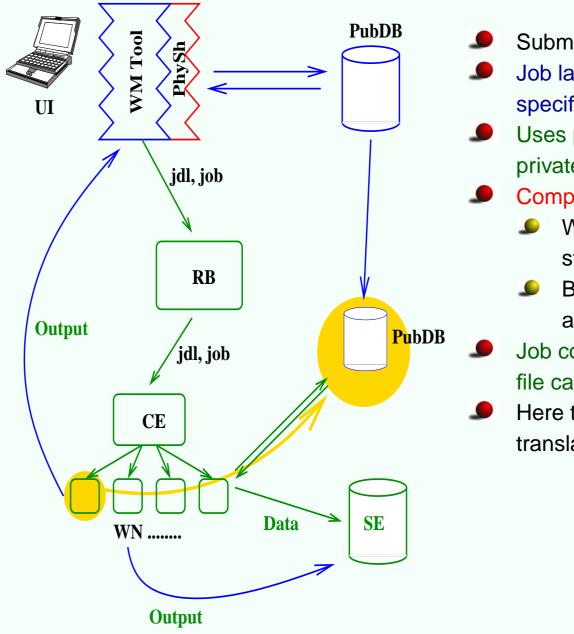


Workflow (II)



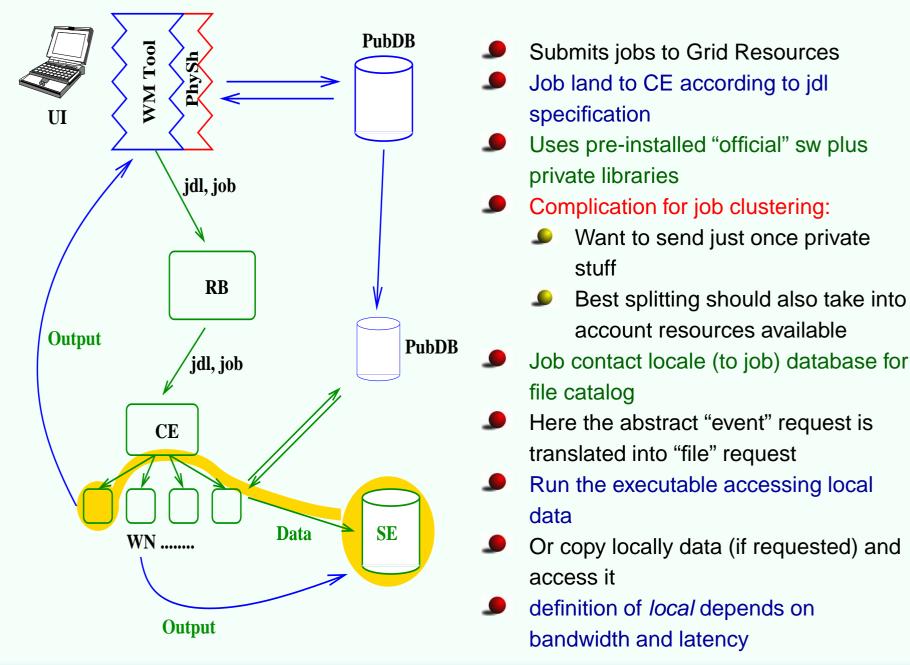
- First query to Dataset catalog to discover available datasets
- Dataset Discovery
- Resolve abstract request to concrete location: Dataset XYZ is in Padova and CERN
- Foresee dataset splitted into n different sites (1/2 in PD, 1/2 in Madagascar)
- Put information about dataset availability on Job Description MetaData
- Perform job splitting according to user requirements and data distribution

Workflow (III)



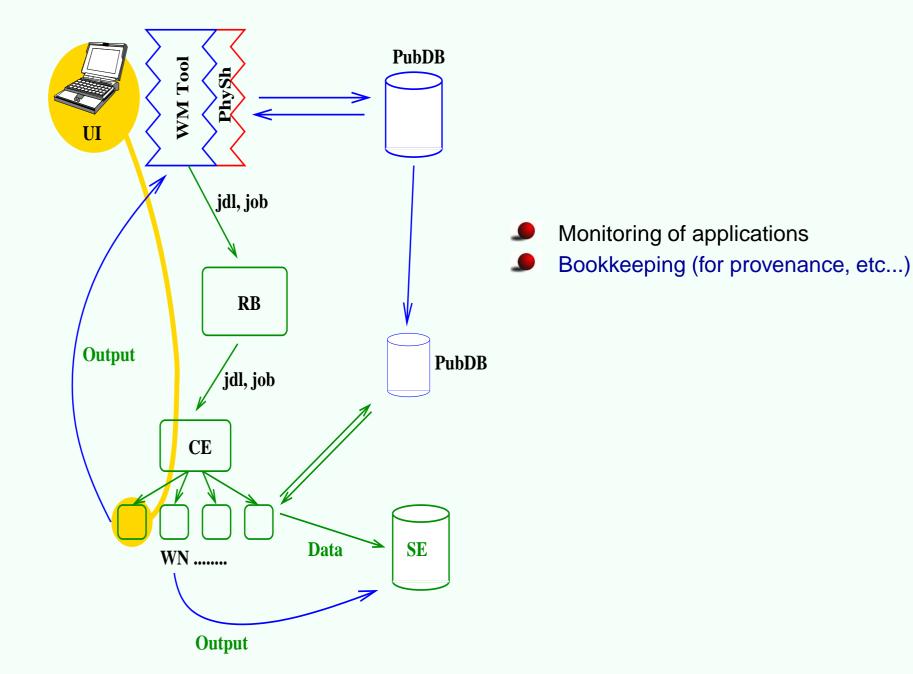
- Submits jobs to Grid Resources
- Job land to CE according to jdl specification
- Uses pre-installed "official" sw plus private libraries
- Complication for job clustering:
 - Want to send just once private stuff
 - Best splitting should also take into account resources available

Workflow (III)

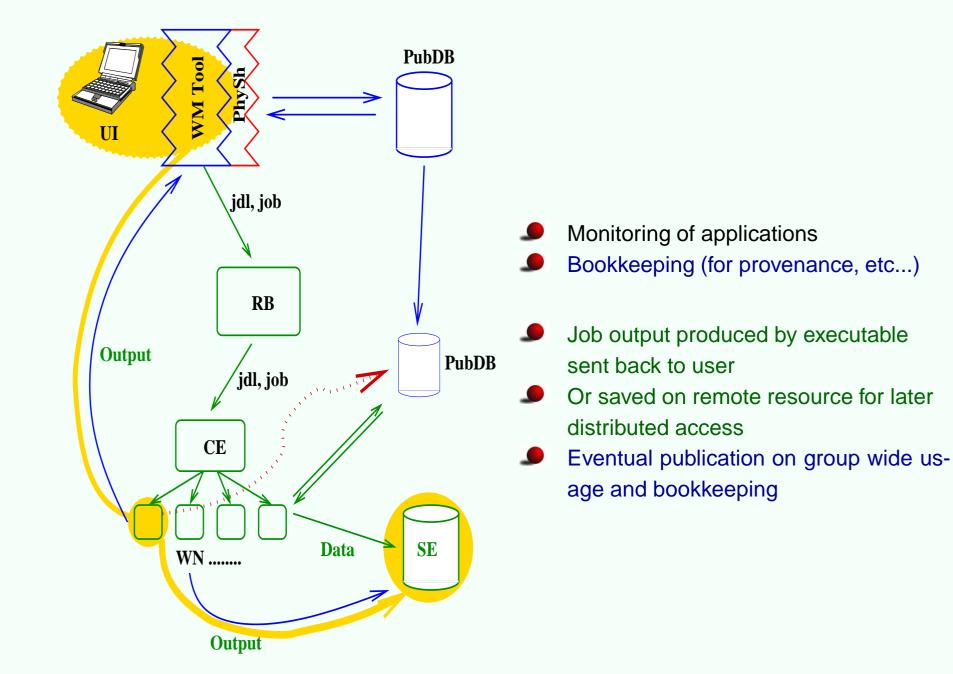


- Submits jobs to Grid Resources
- Job land to CE according to jdl specification
- Uses pre-installed "official" sw plus private libraries
- Complication for job clustering:
 - Want to send just once private stuff
 - Best splitting should also take into account resources available
- Job contact locale (to job) database for file catalog
- Here the abstract "event" request is translated into "file" request

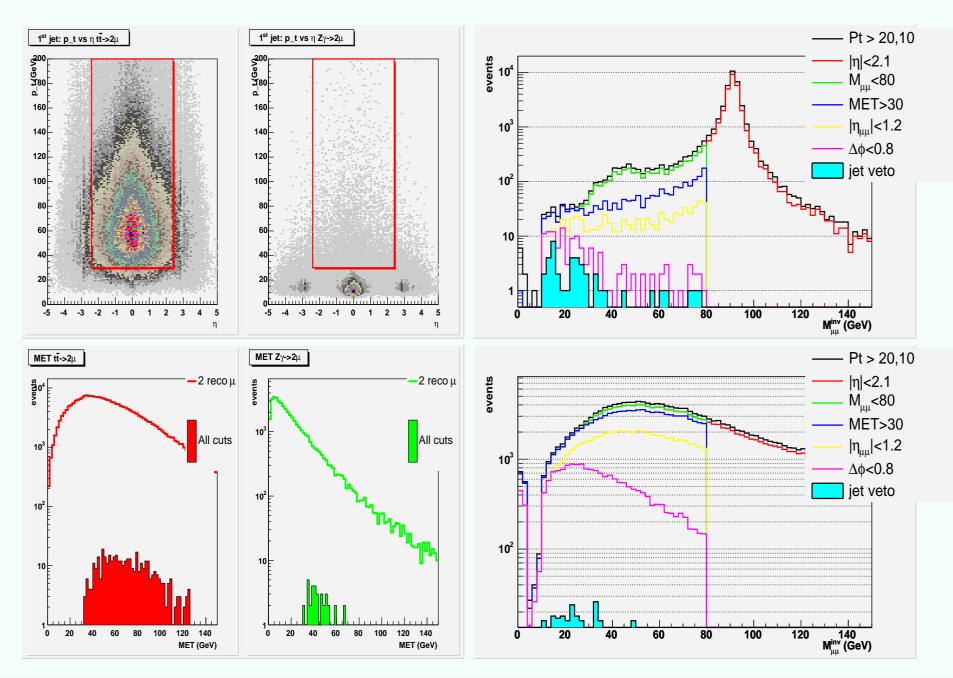
Workflow (III)



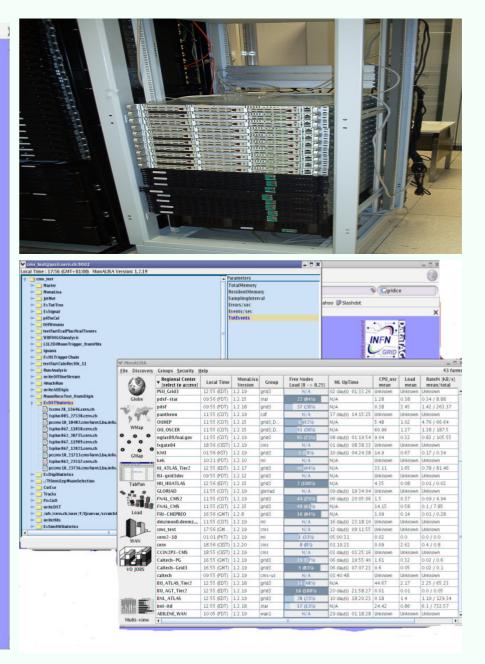
Workflow (IV)



Workflow (IV)



It works!


Stefano Lacaprara – Center of Excellence MIUR-Univ. Padova Workshop, Padova, Friday 29 October 2004 – Toward a WoldWide Physics Analysis Framework for LHC Experiment – p.19/21

Monitoring

MonALISA	🖉 INFN - Gridi	CE - Grid Monitoring S							
1.5.0	1.	12			2	•	•	J	
	(-ria)	(n)				2	٦.		
INFN					1	INFI	1	2	
GRID	~ /				1	1	RID		
	the eyes of Joh Monitoring	The Grid			Ğ.	Hale	- abu	1	
Site view VO view	lob Monitoring Ge	o view Gris view				Help	abo		
	Select Site and/or Role			Show			Full View		
pd.infn.it									
grid031.pd.infn.it RB	UpTime: 50-20:32	Load: 0.0-0.0-0.0	Files.: 3377	Socket: TCP(35)	UDP(13)	FS NA	PA	Ful	
prod-rb-01 RB	UpTime: 20-21:33	Load: 0.0-0.0-0.0	Files.: 3041	Socket: TCP(13)		FS NA		Full	
gridit001.pd.infn.it CE	UpTime: 51-3:41	Load: 0.4-0.4-0.4	Files.: 3010	Socket: TCP(82)	UDP(27)	FS NA	PA	Full	
egrid-se-01.pd.infn.it SE	UpTime: 50-4:26	Load: 0.0-0.0-0.0	Files.: 1049	Socket: TCP(15)	UDP(7)	FS NA	PA	Full	
gridit002.pd.infn.it SE	UpTime: 51-3:7	Load: 0.1-0.0-0.0	Files.: 3690	Socket: TCP(20)	UDP(14)	FS NA	PA	Full	
prod-se-01.pd.infn.it SE	UpTime: 20-23:2	Load: 0.0-0.0-0.0	Files.: 2974	Socket: TCP(12)	UDP(13)	FS NA	PA	Full	
prod-se-02.pd.infn.it SE	UpTime: 48-16:33	Load: 0.0-0.0-0.0	Files.: 536	Socket: TCP(8)	UDP(13)	FS NA	PA	Full	
lxcde01.pd.infn.it WN	UpTime: 43-1:3	Load: 2.0-2.0-2.0	Files.: 636	Socket: TCP(52)	UDP(30)	FS NA	PA	Full	
lxcde02.pd.infn.it WN	UpTime: 43-5:6	Load: 2.1-2.1-2.1	Files.: 639	Socket: TCP(52)	UDP(30)	FS NA	PA	Full	
lxcde03.pd.infn.it WN	UpTime: 50-22:2	Load: 2.0-2.0-2.0	Files.: 643	Socket: TCP(54)	UDP(32)	FS NA	PA	Full	
lxcde04.pd.infn.it WN	UpTime: 51-2:3	Load: 2.0-2.0-2.0	Files.: 639	Socket: TCP(52)	UDP(30)	FS NA	PA	Ful	
lxcde06.pd.infn.it WN	UpTime: 50-22:33	Load: 2.2-2.1-2.1	Files.: 635	Socket: TCP(52)	UDP(30)	FS NA	PA	Full	
lxcde07.pd.infn.it WN	UpTime: 49-4:32	Load: 2.0-2.0-2.0	Files.: 635	Socket: TCP(52)	UDP(30)	FS NA	PA	Full	
lxcde08.pd.infn.it WN	UpTime: 51-0:2	Load: 2.0-2.0-2.0	Files.: 636	Socket: TCP(52)	UDP(30)	FS NA	PA	Full	
prod-wn-001.pd.infn.it WN	UpTime: 51-2:9	Load: 2.0-2.0-2.0	Files.: 608	Socket: TCP(47)	UDP(24)	FS NA	PA	Full	
prod-wn-002.pd.infn.it WN	UpTime: 51-2:40	Load: 2.0-2.0-2.0	Files.: 604	Socket: TCP(48)	UDP(25)	FS NA	PA	Full	
prod-wn-003.pd.infn.it WN	UpTime: 51-2:38	Load: 2.0-2.0-2.0	Files.: 604	Socket: TCP(48)	UDP(24)	FS NA	PA	Full	
prod-wn-004.pd.infn.it WN	UpTime: 51-2:9	Load: 2.0-2.0-2.0	Files.: 604	Socket: TCP(48)	UDP(24)	FS NA	PA	Full	
prod-wn-005.pd.infn.it WN	UpTime: 51-2:37	Load: 2.0-2.0-2.0	Files.: 604	Socket: TCP(48)	UDP(24)	FS NA	PA	Full	
prod-wn-006.pd.infn.it WN	UpTime: 50-22:38	Load: 2.0-2.0-2.0	Files.: 600	Socket: TCP(48)	UDP(25)	FS NA	PA	Full	
prod-wn-007.pd.infn.it WN	UpTime: 50-22:9	Load: 2.0-2.0-2.0	Files.: 639	Socket: TCP(52)	UDP(31)	FS NA	PA	Ful	
prod-wn-008.pd.infn.it WN	UpTime: 51-1:8	Load: 2.0-2.0-2.0	Files.: 604	Socket: TCP(48)	UDP(24)	FS NA	PA	Full	
prod-wn-009.pd.infn.it WN	UpTime: 51-0:6	Load: 2.0-2.0-2.0	Files.: 600	Socket: TCP(48)	UDP(25)	FS NA	PA	Full	
prod-wn-010.pd.infn.it WN	UpTime: 51-0:40	Load: 2.0-2.0-2.0	Files.: 604	Socket: TCP(48)		FS NA	PA	Full	
prod-wn-011.pd.infn.it WN	UpTime: 51-1:6	Load: 2.0-2.0-2.0	Files.: 604	Socket: TCP(48)		FS NA	PA	Full	
prod-wn-012.pd.infn.it WN	UpTime: 50-22:37	Load: 2.0-2.0-2.0	Files.: 607	Socket: TCP(50)	UDP(27)	FS NA	PA	Full	
prod-wn-013.pd.infn.it WN	UpTime: 51-0:37	Load: 2.0-2.0-2.0	Files.: 600	Socket: TCP(48)	UDP(24)	FS NA	PA	Full	
prod-wn-014.pd.infn.it WN	UpTime: 50-22:36	Load: 2.0-2.0-2.0	Files.: 607	Socket: TCP(50)		FS NA	PA	Full	
prod-wn-015.pd.infn.it WN	UpTime: 51-1:7	Load: 2.0-2.0-2.0	Files.: 604	Socket: TCP(48)	UDP(25)	FS NA	PA	Full	
prod-wn-016.pd.infn.it WN	UpTime: 50-23:37	Load: 2.0-2.0-2.0	Files.: 600	Socket: TCP(48)	UDP(25)	FS NA	PA	Full	
prod-wn-017.pd.infn.it WN	UpTime: 51-2:7	Load: 2.0-2.0-2.0	Files.: 604	Socket: TCP(48)	UDP(24)	FS NA	PA	Full	
prod-wn-018.pd.infn.it WN	UpTime: 6-23:2	Load: 2.0-2.0-2.0	Files.: 639	Socket: TCP(52)	UDP(30)	FS NA	PA	Full	
prod-wn-019 nd infn it WN	UnTime: 51-0:5	Load: 2 0-2 0-2 0	Files : 600	Socket TCP(48)	UDP(25)	FS NA	P۵	Full	

Concluding comments

- What a hard life!
- And only to access data!
- Then the real physic work begins
- Is it needed?
 - Requirements: allow $\mathcal{O}(1000)$ people to access $\mathcal{O}(1) \ PB/y^r$
 - If failure: failure of all LHC.
- First LHC collision in 2007: must be ready!
- Work in progress...