Data	BEC	Conclusions	Backup

Bose–Einstein Correlation Status Report QCD-10-003

Paolo Checchia¹, Tommaso Dorigo¹, Mario Galanti², **Stefano Lacaprara**¹, Massimo Nespolo¹, Luca Perrozzi¹, Franco Simonetto¹, Ezio Torassa¹

¹INFN and University Padova and ²Cyprus University

CMS Physics Plenary CERN, 24 February 2010

Intro Data BEC Conclusions Backup oo oocooooooooo

Intro: Bose–Einstein Correlation

- Wave function for identical boson particles (signal) is enhanced wrt uncorrelated case (reference) due to B–E statistics $R = \frac{P(p_1,p_2)}{P(p_1)P(p_2)}$
- use a single variable $Q = \sqrt{-(p_1 p_2)^2} (\pi \text{ hypothesis})$ $R(Q\{p_1, p_2\}) = \frac{\Pi(Q)_{signal}}{\Pi(Q)_{reference}}$
- expect excess for R at low Q

$$R(Q) = C[1 + \lambda \Omega(Qr)] \cdot (1 + \delta Q)$$

- $\Omega(Qr)$ F. trasf. of emission region, with effective size r;
- $\lambda < 1$ strength parameter;
- + δ factor accounts for long-distance correlations or biases due to reference sample.

BEC: bibliography

$\pi^{\pm}\pi^{\pm}$ BEC analyses	Pa	rameter	1
Reaction E _{CM}	[GeV] R [fm]	λ	[29] [MARKII Coll.], I. Juricic et al., Phys. Rev. D39 (1989) 1.
$e^+e^- \rightarrow h$ [29]	29 0.97 ± 0.11 (s	stat) 0.27 ± 0.04 (sta	(1986) [30] [TASSO Coll.], M. Althoff et al., Z. Phys. C30 (1986) 355.
$e^+e^- \rightarrow h$ [30]	34 0.82 ± 0.07	0.35 ± 0.03	
$e^+e^- \rightarrow h$ [31]	91 0.83 ± 0.03	0.31 ± 0.02	[51] [DELPHI Coll.] P. Abreu et al., Phys. Lett. B286 (1992) 201.
$\mu p \rightarrow h$ [32]	23 0.65 ± 0.03	0.80 ± 0.07	[32] [EMC Coll.], M. Ameodo et al., Z. Phys. C32 (1986) 1.
$\pi^+ p \rightarrow h$ [33] 2	0.83 ± 0.06	0.33 ± 0.02	[33] [NA22 Coll.], M. Adamus et al., Z. Phys. C37 (1988) 347.
$pp \rightarrow h$ [34] 200	0.73 ± 0.03	0.25 ± 0.02	1241 HIALCHILL C. Marine at al. Phys. Lett. B236 (1080) 410
$e \ p \rightarrow e \ h$ [35] 110 < 0	$Q_2^2 [\text{GeV}^2] = 0.67 \pm 0.04$	0.43 ± 0.09	[34] [041 Col.], C. Albaja et al., Flys. Lett. B120 (1969) 410.
Other hadron species	Pa	rameter	[35] [ZEUS Coll.], M. Derrick Acta Phys. Polon. B33 (2002) 3281.
BEC analyses in e^+e^- –	$\rightarrow h$		[36] [DELPHI Coll.], P. Abreu et al., Phys. Lett. B379 (1996) 330.
hadron species E _{CM}	[GeV] R [fm]	λ	[37] [ALEPH Coll.], D. Buskulic et al., Z. Phys. C64 (1994) 361.
$K^{\pm} K^{\pm}$ [36]	91 0.48 ± 0.04 ± 0.0	$0.82 \pm 0.11 \pm 0.25$	
$K_S^0 K_S^0$ [37]	91 $0.65 \pm 0.07 \pm 0.1$	5 0.96 \pm 0.21 \pm 0.40	$r(fm) \rightarrow Ref sample$
1.4			$= 0.83 \pm 0.03 \ 0.31 \pm 0.02 \ +-$
L			α 1.6 - 0.47 ± 0.03 0.24 ± 0.02 mixed
1.3 UA1 √s	s = 630 GeV Gaussian	fit _	
1 t+1			
⊨ 1.2 - 1	NB: UA1 u	ses pp	$r = 0.62 \pm 0.04 (stat) \oplus 0.20 (syst) f$
	at LHC we h	ave pp	$_{1.2} \vdash_{N}^{k} \lambda = 0.40 \pm 0.03 (stat) \pm 0.05 (syst).$
1.1			- X
	╈╪╪ _╋ ╸╻╺╴╺	+ + †	1 - Mar Alexandra Martin and Andrew Alexandra
1.0	··· + · · + · · + · · +		- methoda
o L	I I		0.8 - 3/32

	Data ●○	BEC 0000000000000000	Conclusions	Backup
Datasets used				
Events	and track sel	ections		

- 900 GeV \sim 280 Kevts $_{runs:}$ 124009, 124020, 124022, 124023, 124024, 124027, 124030, 124230
- 2360 GeV $\sim 14~\textit{Kevts}$ $_{runs:~124120,~124275}$
- MinimumBias/BeamCommissioning09-Dec19thReReco_336p3_v2/RECO
- Trigger: BSC minbias, coincidence with bptx, veto beam halo:
 - 0 AND (40 OR 41) AND NOT (36 OR 37 OR 38 OR 39) also physics declared bit is requested;
 - $2 \le N_{charged tracks} \le 150$
- CMSSW_3_3_6
- MonteCarlo: NO BEC or Coulomb simulated in MC!
 - 900 GeV

/MinBias/Summer09-STARTUP3X_V8K_900GeV-v1/GEN-SIM-RECO

 2360 GeV /MinBias/Summer09-STARTUP3X_V8L_2360GeV-v1/GEN-SIM-REC0

	Data ○●	BEC 000000000000000000000000000000000000	Conclusions	Backup
Track selec	tion			
Track	s selections			
	• good charged tracks • high purity tracks • $p_t > 200 \ MeV$ • $d_{xy}^{(PV)} < 1.5 \ mm$ • $Ndof > 5$ • $\chi^2/Ndof < 5$ • $ \eta < 2.4$ • $R_{innermost \ hit} < 20 \ cm$	1		
	 Split tracks veto: reject two same sign cos(θ_{i,j}) > 0.999 && Δp_{ti,j} < 0.04 affect only region Q 	tracks if: 96 40 <i>GeV</i> < 20 <i>MeV</i>	2200	1.16 0.18 0.2

5/32

- BEC is present at very low Q; working with very close pairs of low p_t tracks: efficiency vs Q is critical;
- Q distribution is always normalized to a reference sample (w/o BEC), so ratio of $\epsilon_{signal}/\epsilon_{reference}$ is the relevant quantity
- ϵ(Q) ratio for signal/reference opposite-hemisphere tracks
 (see below) (p
 ₂^o = − p
 ₂)
- $\epsilon(Q)$ ratio is \sim flat, small deviation from 1 (see after).

Coulomb correction

- Other effect present at low *Q*: Coulomb repulsion for same sign particles
- An analytical correction (Gamow factor) available $W_S(\eta) = \frac{e^{2\pi\eta} - 1}{2\pi\eta} \qquad \eta = \alpha m_\pi/Q$
- tested in opposite charge pairs, dN/dQ data/MC (no Coulomb present in MC!)
- left: Q opposite charge with Gamow factor superimposed. right: same with Gamow factor applied.

Intro	Data	BEC Con	clusions Backup
		000000000000000000000000000000000000000	
Choice of a Refe	rence Sample		
D C		· · · · · · · · · · · · · · · · · · ·	

Reference sample: opposite charge tracks

- several reference sample have been considered
- Opposite charge tracks
- Difficult: resonances ρ_0 , K_0 , ...
- Also BEC present as a consequence of virtual processes involving the ρ and higher-mass common states.
- left: dN/dQ Data right: MC (no BEC present)

Opposite hemisphere and rotated Particles

- **Opposite hemisphere tracks** 3D inversion of track momentum $Q_O = \sqrt{-(p_1 p_2^o)^2}$, where $p_2^o = (E_2, -\vec{p_2})$;
- default reference sample
- Rotated tracks \vec{p} inversion in trasverse plane $\vec{p}_2 = (-p_x, -p_y, p_z)_2;$
- left: dN/dQ Opposite hemisphere right: rotated

- Take two tracks from different events
- three ways to choose the "other" event:
 - fully randomly;
 - 2 randomly from event with similar (within 20%) track density, in 3 regions (forward $\eta > 0.8$, backward $\eta < -0.8$ and central);
 - randomly from event with similar (within 20%) total invariant mass M = (Σ_ip_i)²;
- left: (1) center: (2) right: (3)
- ullet note: the MC distribution reproduces well the slow raise at high Q

ntro Data 00 BEC

Determination of BEC Parameters

Determination of BEC Parameters

 Past BEC articles use gaussian function to fit data: we found a better description by using an exponential shape instead;

$$R(Q) = C\left(1 + \lambda e^{-(Qr)}
ight) \cdot (1 + \delta Q)$$

- Moreover, in order to reduce systematics due to reference sample, we fit the double ratio $\mathcal{R}=R/R_{MC}$
 - R_{MC} is the signal to reference ratio computed in the simulated events generated without BEC;
 - $\bullet\,$ for opposite charge, exclude ρ region from fit;
 - for all cases, fit region: 0.02 < Q < 2 GeV.

Reference Sample	p-value	С	λ	r (fm)	δ
Different charge (1)	1.88×10^{-1}	1.000 ± 0.001	0.547 ± 0.023	1.394 ± 0.043	~ 0
Opposite Hemisphere (2)	7.30×10^{-2}	0.995 ± 0.003	0.633 ± 0.027	1.497 ± 0.056	$(1.07 \pm 0.20) \times 10^{-2}$
Rotated (3)	2.42×10^{-4}	0.930 ± 0.003	0.677 ± 0.022	1.290 ± 0.039	$(5.79 \pm 0.24) imes 10^{-2}$
Event Mix (4a) (random order)	3.05×10^{-12}	1.017 ± 0.001	0.545 ± 0.025	1.441 ± 0.049	~ 0
Event Mix (4b) $(dN/d\eta)$	4.24×10^{-2}	1.010 ± 0.001	0.636 ± 0.029	1.771 ± 0.055	~ 0 🗸
Event Mix (4c) (\mathcal{M})	$5.19 imes 10^{-3}$	1.005 ± 0.002	0.670 ± 0.027	1.749 ± 0.056	$(2.50 \pm 1.5) imes 10^{-3}$

12 / 32

Intro	Data 00	BEC ○○○○○ ○○ ○○○○○○	Conclusions	Backup
Determination of BI	EC Parameters			

Fit function menu

• Gaussian shape (widely used in literature)

$$R(Q) = C \left[1 + \lambda e^{-(Qr)^2} \right] \cdot (1 + \delta Q)$$

Exponential shape

$$R(Q) = C \left[1 + \lambda e^{-(Qr)}\right] \cdot (1 + \delta Q)$$

 Lévy shape (multiple randomly distributed gaussian) $(0 < \alpha < 2)$ [arXiv:hep-ex/0506015v1]

$$R(Q) = C \left[1 + \lambda e^{-(Qr)^{lpha}}
ight] \cdot (1 + \delta Q)$$

• Kozlov et al [Phys. Rev. C 68, 024901 (2003)]

$$R(Q) = C \left[1 + \frac{2\alpha}{(1+\alpha)^2} \sqrt{\Omega(Qr)} + \frac{1}{(1+\alpha)^2} \Omega(Qr) \right] (1+\delta Q)$$

- gaussian: $\Omega(Qr) = e^{-(Qr)^2}$ exponential: $\Omega(Qr) = e^{-(Qr)}$

BEC

Conclusions

Backup

Determination of BEC Parameters

Double ratio opposite hemisphere different fits

1.6

1.2

p (GeV/c)

15 / 32

1.8 2 Q (GeV)

1.2 1.4

Limited statistics: show results (double R) only for opposite hemisphere reference sample and exponential fit.

Reference Sample	p-value	С	λ	r (fm)	δ
Opposite Hemisphere (2)	3.39×10^{-1}	0.991 ± 0.006	$0.68 {\pm} 0.11$	$1.96 {\pm} 0.20$	$(1.47 \pm 0.48) \times 10^{-2}$

Data

BEC

Conclusions

Backup

Dependence of BEC on Pair Kinematics

INFN 💕

Data	BEC

Estimate of the Analysis Bias

Extraction of BEC parameter from MC

Dedicated MC production with BEC enabled

PARJ(92)=0.4 (λ), PARJ(93)=0.25 (r = 0.8 fm) and MSTJ(51)=1 (exponential shape)

- Perform analysis using generated particles, same cut as reco (where applicable);
- Use standard MC as reference sample;
 - Consider 3 generated track samples: all, all pions, all primary pions (particles which undergo BEC)
 - BEC diluited for more inclusive sample;
 - Compare with analysis with reconstructed quantities: for R and \mathcal{R} (double R);
 - see next slide for plots and fit results.
- Will consider the (small) bias for systematic uncertainties;
- Found r as in input, λ comparison less straigthforward (according to Pythia manual);
 - Tried also with gaussian shape: correctly found in R.

Data

BEC

Conclusions

Backup

Estimate of the Analysis Bias

	Data 00	BEC	Conclusions	Backup
Systematic Uncertain	ties			
Systemati	cs and Res	ults		

- main systematics from choice of reference sample:
 - no golden sample avaialable;
 - use spread of results from different references to estimate it;
- other syst source is the bias found comparing generated and reconstructed quantities in MC w/ BEC.

Results (exp. fit): still under discussion. Feedback welcome!

Using opposite—hemisphere as central value and maximum deviation as sys ref (other choices possible): $r = 1.50 \pm 0.06 \text{ (stat)} \pm 0.27 \text{ (sys ref)} \pm 0.15 \text{ (sys bias)} fm$ $\lambda = 0.633 \pm 0.027 \text{ (stat)} \pm 0.086 \text{ (sys ref)} \pm 0.005 \text{ (sys bias)}$ Using mean and RMS from the different references samples: $r = 1.59 \pm 0.06 \text{ (stat)} \pm 0.19 \text{ (sys ref)} \pm 0.16 \text{ (sys bias)} fm$ $\lambda = 0.618 \pm 0.027 \text{ (stat)} \pm 0.053 \text{ (sys ref)} \pm 0.005 \text{ (sys bias)}$

Intro	Data 00	BEC 000000000000000	Conclusions	Backup

Conclusions

- Clean and robust Bose-Einstein Correlation signal found in 900 and 2360 GeV data;
 - several reference samples have been used;
 - tested with PID dE/dx;
 - tested with MC BEC;
 - used double ratio to reduce systematics;
 - several fit functions tried: exponential seems favored by data wrt gaussian;
- Finalizing AN and PAS.

Data	BEC	Conclusions	Backup

BACKUP

Data	BEC	Conclusions	Backup

Q DATA: for Signal and Opposite Hemisphere

Data	BEC	Conclusions	Backup

Q DATA: for Same Sign and Different Sign tracks

Data	BEC	Conclusions	Backup

Q MC: for Same Sign and Different Sign tracks

Data	BEC	Conclusions	Backup

Opposite charge: mother ID

26 / 32

Data	BEC	Conclusions	Backup

Opposite charge: mother ID

Data	BEC	Conclusions	Backup

Opposite charge: mother ID

Data 00	BEC 0000000000000000	Conclusions	Backup

dE/dx w/ and w/o pixels

Data 00	BEC 000000000000000	Conclusions	Backup

Method

- For each P_t, η:
 - scan grid in $\Delta \phi$, $\Delta \eta$ for second track (assumed equal P_t)
 - compute Q-value of pair
 - compute distance on 3rd layer in xy and z views
 - Determine Q-values which correspond to track pair separations always larger than two pixel pitches in xy and in z

Data

Conclusions

Backup

Minimum Q in grid of P_t and η

- Low P, and |η|<2: Q>0.02 seems reasonable, given conservative choice of pitch separation
- Note that for Q below the curve shown, efficiency does not drop to zero immediately – it just starts to involve two "very close" pixel hits on third layer

