Angular analysis: status and perspective

Stefano Lacaprara (with the help of many people!) on behalf of CMS collaboration

stefano.lacaprara@pd.infn.it

INFN Padova

BPH Workshop, CERN, 10 March 2018

Introduction

Angular analysis: status and perspectives

- $\bullet\,$ Currently, there are four angular analysis being performed at CMS
 - ► $B_0 \rightarrow K^* \mu \mu$
 - $\blacktriangleright B^+ \to K^{+*} \mu \mu$
 - $\blacktriangleright B^+ \to K^+ \mu \mu$
 - $B_s \to \phi \mu \mu$

This presentation

I will focus on the current status and on the following items:

- plan for the analysis, and which data you will consider (2016/2017/2018 all together?)
- are there improvements foreseen in the analysis procedure itself?
- expected results
- timescale and manpower commitment

- \checkmark paper in publication (PLB second round of reply) with 2012 data.
 - other two paper previously published:
 - \star 7 TeV, \sim 400*ev*, A_{FB} , F_L , $d\mathcal{B}/dq^2$ ^[PLB 727 (2013) 77]
 - * 8 TeV, \sim 1400*ev*, A_{FB} , F_L , $d\mathcal{B}/dq^2$ [PLB 753 (2016) 424]
- **×** major complains during conferences are about having some of the parameter fixed
- × second is the complexity of the fit (this is of course correlated)
- × third are the results, too close to SM (especially from Matias ...)

$B_0 \rightarrow K^* \mu \mu$: Perspective

- Improvements for 13 TeV data
- people: Padova (S., Alessio), PKU (Dayong, Linwei), MiB (Sara, Paolo, Mauro)
- \checkmark better selection: cut based \rightarrow MVA
- \checkmark better tagging
- Fully free fit!
 - single fit with all parameters (8 from p-wave)
 - full correlation among parameters from the fit
 - try GPU based fit to improve timing
- efficiency modelling
 - good description of all feature, fit-friendly (fast fit!)
- x s-wave treatment
 - \blacktriangleright expected to be <10%, but cannot be treated as a systematics uncertainties
 - ▶ for a precision measurement, neither the s/p-wave interference can.
 - this is the origin of all our fit stability problems.
- X more, finer bins?
- × momenta method (by LHCb) still not explored.
 - Less statistical power, but with larger stat we might be syst limited, so maybe worth.

- $\checkmark\,$ 8 TeV was cut based, moving to MVA.
 - \blacktriangleright Large improvement of signal eff. $\sim 60\%$ wrt 2012-optimized cut;
 - $\checkmark~$ optimization on number of variables used
- background is at the same level as 2012
- we did see some yield fluctuation on 2016 data (as seen in BMM4). Better in 2017.
- ✓ Roughly 100ev/ fb⁻¹, namely do have now $\sim 6 8000$ signal events, can can hope to have $\sim 12 15000$.
- same statistics expected by LHCb! (but they have lower background and lower mis-tag rate)

Flavour tagging B_0 vs $\overline{B_0}$

- In 8 TeV data we used $M_{K\pi}$ distribution
- tried some improvement (Armenteros-Podolanski plot)
 - look at $\alpha = \frac{p_l^+ p_l^-}{p_l^+ + p_l^-}$
 - Preliminary results not showing significant improvements, will investigate further
- given the large stat, we can possibly consider to cut away a subset where the mistag is particularly high, in order to improve the correct over mistag ratio. To be studied.

What we need: 3D eff, no factorization, and no folding

- $\checkmark~$ we have 3x MC as in 2012,
 - \checkmark but no folding means 4x phase space
- we are considering several different choices
 - binned vs unbinned eff
 - KDE (as for 8 TeV)
 - projection on orthonormal basis of 3D function (LHCb)
 - 🕒 fit
 - MVA (also from LHCb idea)

need to ensure a fast fit!

An example of closure test (GEN× ε vs RECO) with ε modelled with polynomial fit (up to pol5).

fit done using via GooFit (RooFit plus CUDA on nVidia GPUs)

First test of free fit on 2-16 MC

MC, GEN level. 8 free parameters: (p-wave only). F_L , $P_{1,2,3}$, $P'_{4,5,6,8}$

GEN-level fully free fit

Comparison of parameter from free fit and fit after folding

new parameters output

Full angular fitting from gen MC •

J/ ψ and ψ (2S) region

-

3 18 20 g² (GeV²)

Determination of FS is performed through a fit to the kaon helicity angle θ_K and $m^2_{K\pi}$:

 $m_{K\pi} \in [644, 1200]$ and [796, 996] MeV²

Explicitly modelling of the $m^2_{K\pi}$ spectrum:

- P-wave [K*(892)]: Relativist BW
- S-wave [*i.e.* K*(1430) + NonRes]: LASS

<u>ξ</u>ξ0.

-_______ ∽0.15⊢

0.1

0.05

LHCb, JHEP 11 (2016) 047, JHEP 04 (2017) 142

LHCb

Preliminary

- We know that s-wave is small $\sim 10\%$
- LHCb measured it via amplitude fit $(\cos \theta_K \text{ and } M_{K\pi})$
- but we are using $M_{K\pi}$ for flavour tagging, biased distribution: can we fit?
- furthermore we do not have an s-wave MC to play with
- very difficult to have MC with interference

• Team: Po-Hsun/Sanjay

• AN-12-066, BPH-15-009

- still on 8 TeV dataset latest update: 6 march 2018.
 - reduced number of bins of q^2
 - * [1 8.68], J/\psi, [10.09 12.86], $\psi',$ [14.18, 19] $\,\, {\rm GeV}^2\,$ plus [1 6] ${\rm GeV}^2$
 - better treatment of background: low/high SB added separately to the final fit
 - FC for stat uncert
 - full syst uncert determination
- ARC not yet responded
- Personal (Stefano): pre-approval was 24/11/2015, need to check if ARC are still available
- Po-Hsun and Niladri are leaving (after graduating), so manpower will be an issue

 $B^+
ightarrow K^{+*} \mu \mu$ (II)

S.Lacaprara (INFN Padova)

Angular analysis

CMS

 $B^+
ightarrow K^{+*} \mu \mu$ (III)

INFN

- Team Dayong, Geng (PKU)
- Status BPH-15-002 approved in time Moriond
- Currently in CWR (ended): target journal PRD-RC
- Perspective for RunII
 - ▶ Geng is gradating and will not continue Run-II analysis, PKU are identifying a new student to follow it.
 - reuse most of Run-1 tools
 - try to measure some asymmetries in addition to A_{FB} and $F_{L(H)}$
 - manpower is an issue: Geng is leaving, need to attract more people
- PKU is also interested in R(K), R(K*)
- Possibly a new Ph.D student could work on this topic.

$B_s \rightarrow \phi \mu \mu$: Motivation

Goal: angular analysis at CMS wth 36 fb⁻¹ at 13 TeV for $B_s \rightarrow \phi \mu \mu$ FCNC Team: Deepak Kumar Sahoo, Niladribihari Sahoo, Martha Cecilia Duran Osuna, Seema Bahinipati

- FCNC process in SM mediated by EW loop and box diagrams ^[JHEP 07 (2008) 106]
- final state not self tagging, reduced set of observable
- Indirect search to NP: sensitive to $C_{7,9,10}$ (γ and EW penguin)
- done by LHCb^[LHCb, JHEP 09 (2015) 179] $3.0 \, \text{fb}^{-1}$
 - ▶ full set of observable F_L , $S_{3,4,7}$, $A_{5,6,8,9}$. No significant deviation from SM

Observable

• Differential decay rate of $B_s \rightarrow \Phi \mu^+ \mu^-$ decay as a function of $\cos \theta_k$, $\cos \theta_i$, Φ and q^2 [JHEP 07 (2008) 106]

$$\frac{1}{d\Gamma/dq^2} \frac{d^3\Gamma}{d\cos\theta_\ell d\cos\theta_\ell d\phi} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2\theta_k + F_L \cos^2\theta_k \right. \\ \left. + \frac{1}{4} (1 - F_L) \sin^2\theta_k \cos 2\theta_\ell - F_L \cos^2\theta_k \cos 2\theta_\ell \right. \\ \left. + S_3 \sin^2\theta_k \sin^2\theta_\ell \cos 2\phi + S_4 \sin 2\theta_k \sin 2\theta_\ell \cos 2\phi + S_5 \sin 2\theta_k \sin 2\theta_\ell \sin \phi + A_6 \sin^2\theta_k \cos \theta_\ell \right. \\ \left. + S_7 \sin 2\theta_k \sin \theta_\ell \sin \phi + A_6 \sin 2\theta_\ell \sin 2\theta_\ell \sin \phi \right. \\ \left. + A_9 \sin^2\theta_k \sin^2\theta_\ell \sin 2\phi \right]$$

- Using Full decay rate equation, one can access FL,S₃,S₄,S₇: CP Averaged Observables A₅,A₆,A₈,A₉: CP Asymmetric Observables
- Integrating out from $\Phi,$ one can access F_L and A_6 observables (due to low statistics)

$$\frac{1}{d\Gamma/dq^2} \frac{d^2\Gamma}{d\cos\theta_\ell d\cos\theta_k} = \frac{9}{16} \left[\frac{1}{2} (1 - F_L) (1 - \cos^2\theta_k) (1 + \cos^2\theta_\ell) \right. \\ \left. + 2F_L \cos^2\theta_k (1 - \cos^2\theta_\ell) + A_6 (1 - \cos^2\theta_k) \cos\theta_\ell \right]$$

Selection and yield

- · Optimized selection cuts using cut and count method
 - K^{+/-} p_T > 1.3 GeV
 - K^{+/-}D.C.A/σ > 0.8
 - B_S L_{xy}/σ > 8.5
 - B_S cos α_{xy} > 0.9992
 - B_S vertex CL > 0.04
- . Select single candidate having best B_s-vertex CL
- · Anti-radiation cuts applied

Control Channels

M_Φ : [1.01, 1.03]

• M_{Bs}: [5.1, 5.6] GeV

GeV

Binning:

- **Bin 0**: $1 4.30 \, \text{GeV}^2$
- **Bin 1**: $4.30 8.68 \, \text{GeV}^2$
- Bin 2: J/ψ
- Bin 3: $10.09 12.86 \text{ GeV}^2$
- Bin 4: ψ'
- **Bin 5**: $14.18 16 \text{ GeV}^2$
- **Bin 6**: $16 19 \,\text{GeV}^2$
- Bin 7 (summary): $1 6 \,\text{GeV}^2$
- Bin 8 (summary): all

observed low stat in bin 3,5,

investigating

- $\checkmark\,$ Selection optimization: cut and count
- $\checkmark B_s$ mass in control channel
- \checkmark Gen level fitting
- ✓ eff mapping
- Reco level fitting
- × 3D fitting $(\cos \theta_{\ell}, \cos \theta_{k}, \phi)$
 - validation with signal MC and
- AN-18-068 (ongoing)
- MVA (ongoing)

Plan:

data only 2016, full run II later (is it allowed?)

timescale pre-approval late summer

manpower looks ok

other few similar decay modes $B_s \to f_2'(1525)\mu\mu$ with $f_2'(1525) \to KK$

 Niladri to report some preliminary study in one of BPH meeting

- Rumors: new $B_0 \to K^* \mu \mu$ will be out this summer, with partial statistics. Full dataset will follow
- Angular analysis:
 - ▶ $B_s \rightarrow \phi \mu \mu$ (signal events: 432 ± 24 [LHCb, JHEP 09 (2015) 179]) ▶ $B^+ \rightarrow K^+ \mu \mu$ phase difference [LHCb, EPJC (2017) 77: 161] ▶ $\Lambda_b \rightarrow \Lambda \mu \mu$ [JHEP 06 (2015) 115]
- $\bullet\,$ Many analysis on $d\mathcal{B}/dq^2,$ almost all showing lower than SM results

$$\begin{array}{l} \checkmark \quad B_{0} \rightarrow K^{*} \mu \mu & \mbox{[LHCb, JHEP 06 (2014) 133]} \\ \red{black} & \end{black} B^{+} \rightarrow K^{*} \mu \mu & \mbox{[LHCb, JHEP 06 (2014) 133]} \\ \red{black} & \end{black} B^{+} \rightarrow K^{+} \mu \mu & \mbox{[LHCb, JHEP 06 (2014) 133]} \\ \red{black} & \end{black} \Lambda_{b} \rightarrow \Lambda \mu \mu & \mbox{[JHEP 06 (2015) 115]} \\ \red{black} & \end{black} B_{s} \rightarrow \phi \mu \mu & \mbox{[LHCb, JHEP 09 (2015) 179]}. \end{array}$$

CMS status for angular analysis for Run-II Very personal considerations

- $B_0
 ightarrow K^* \mu \mu$
 - ▶ 8 TeV in publication, hopefully soon.
 - 13 TeV Good overall status, gaining momentum, enough manpower
- $B^+
 ightarrow K^{+*} \mu \mu$
 - Lately good progress, still some work before approval
 - manpower very limited
 - Run-II critical
- $B^+ \to K^+ \mu \mu$
 - 8 TeV CWR ended
 - 13 TeV not yet started
 - manpower limited, need more people
- $B_s \rightarrow \phi \mu \mu$
 - ► 13 TeV status good
 - would suggest more regular status report, even if only to report the issues found
 - manpower seems ok
- $\Lambda_{
 m b}
 ightarrow \Lambda \mu \mu$
 - Anyone?

Additional or backup slides

Effective operator expansion

Rare *b* decays are a multi-scale problem: $\Lambda_{\mathrm{NP}}^2 \gg m_W \gg m_b > \Lambda_{QCD}$

FCNC effective hamiltonian described as operator product expansion

Large number of observables: BF fractions, CP asymmetries and angular observables (5-dimension)

Sensitive to several q² regimes: *e.g.* new vector or axial-vector currents and virtual photon polarisation

Reconstructed as a four track final state, *i.e.* kaon, pion and di-muon

Differential BR vs q^2 at LHCb (I)

Large LHCb datasets allows for precise measurements of the differential BF

- Results hint towards lower rates than predicted by theory
- [Theory uncertainty are correlated across the squared di-muon mass (q²)]

[LHCb, JHEP 06 (2014) 133]

All branching fraction measurements could potentially point to new physics in C₉/C₁₀

SM pred. Bharucha et al [1503.05534] SM pred. Detmold et al [PRD87(2013)074502]

$d{\cal B}/dq^2$ and S-wave in ${\cal B}_0 o {\cal K}^* \mu \mu$

LHCb, JHEP 11 (2016) 047, JHEP 04 (2017) 142

First exclusive measurement of the differential BF of $B^0 \rightarrow K^*(892)^0 \mu^+ \mu^-$

$$\frac{d\mathcal{B}[B^0 \to K^*(892)^0 \mu^+ \mu^-]}{dq^2} = \frac{R_\epsilon}{q_{\max}^2 - q_{\min}^2} \frac{(1 - F_{\rm S}|_{644}^{1200})}{(1 - F_{\rm S}^{J/\psi K^{*0}})} \frac{N^{K^{*0}\mu\mu}}{N_{J/\psi K^{*0}}} \mathcal{B}(B^0 \to J/\psi K^{*0}) \mathcal{B}(J/\psi \to \mu^+ \mu^-)$$

Results compatible both with SM predictions and new physics scenarios hinted by R_K and other $b \rightarrow$ sll branching fractions

Measurements of the S-wave fraction are compatible with theory predictions and previous estimations

SM Bharucha et al [1503.05534]

Phase difference short/long-distance amplitudes in $B^+ \rightarrow K^+ \mu \mu$

Amplitude fit using "Isobar Model" baseline, *i.e.* charmonium states parametrised by the sum of Breit-Wigners [LHCb, Eur. Phys. J. C (2017) 77: 161]

- Effect depends strongly on the relative phase with penguin
- Interference between short and long distance components found to be small
- See further discussion for $B^0 \rightarrow K^{*0}\mu^+\mu^-$ in [arXiv:1709.03921]