Perspective for rare-decay angular analysis: $K^{(*)}\mu\mu$

Stefano Lacaprara,

stefano.lacaprara@pd.infn.it

with a lot of help from: Mauro Dinardo, Alessio Boletti, Linwei Li, Dayong Wang,

INFN Padova

BPH Workshop, CERN, 26/04/2017

$B^0 ightarrow K^* \mu \mu$

- BPH-15-008
- PAS-PUB, soon CWR
- Alessio, SL, Mauro, Linwei ,Dayong
 - Padova, MIB, PKU
- Dataset 2012, $L = 20.5 \, \text{fb}^{-1}$
- Signal/Background yield: 1400/1800
- Measured $BR(q^2)$, A_{FB} and F_L , P_1 , P_5' , no correlation
- no full anagular analysis yet

$\mathsf{B}^+ \to \mathsf{K}^{*+} \mu \mu \ / \ \mathsf{B}^+ \to \mathsf{K}^+ \mu \mu$

- Many people: Geng, Niladri, Po-Hsun, Dayong, Sanjay . . .
 - ▶ PKU, NTU, NISER
- Dataset 2012, $L = 20.5 \, \text{fb}^{-1}$
- BPH-15-009: PreApp (24/11/2015)
 - Sgn/Bkg yield: 130/1000 events
 - Measure A_{FB} and F_L : pdf(cos θ_I , cos θ_K)
- BPH-15-001: PreApp (2/6/2015)
 - Sgn/Bkg yield: 780/2400 ev $q^2 < 6$
 - wSgn/Bkg yield: 2300/5000 ev full q^2
 - Measure A_{FB} and F_H : pdf(cos θ_I)

We don't have (yet) a common measurement of all the angular parameters of a $b \rightarrow s\ell\ell$ decay (LHCb has)

 $\sim 40\,{\rm fb}^{-1}$ at 13 TeV, not yet looked at, plus 2017 data to collect (say other $\sim 40\,{\rm fb}^{-1}$

Yield for various experiment

- CMS: 1400 events (25 fb⁻¹)
- LHCb ^[LHCb(2016)]: 2400 ev (3 fb⁻¹) full angular analysis, correlations
- ATLAS ^[ATLAS(2017)]: 342 (20 fb⁻¹) 4 different foldings, many angular parameters, no correlation
- Belle ^[Belle(2017)]: 187 μ (127 e) (0.71 ab⁻¹ 7.7 · 10⁸ BB): 4 foldings

INFN

- Back of the envelope estimation of 2016 yield
- Inputs:
 - Signal Yield on 2012 dataset
 - $\star~$ ($\textit{L}=20.5\,\textit{fb}^{-1}$) 1400 $\textit{B}^0
 ightarrow \textit{K}^* \mu\mu$
 - ► Inclusive B⁺ x-section at 13 TeV ^[CMS(2016)](BPH-15-004)
 - ★ in 2012 using same HLT trigger HLT_DoubleMu4_Jpsi_Displaced: Yield 600k events
 - * in 2016 (datasets B,C,D, and E $L = 17 \text{ fb}^{-1}$) HLT_DoubleMu4_JpsiTrk_Displaced 400k events
- Estimate for $L = 40 \, \text{fb}^{-1}$ (2016)

$$Y(2016) = Y(2012) \cdot \frac{Y(2016, \mathsf{B}^+ \to \mathsf{J}/\psi\,\mathsf{K}^+)\frac{40}{17}}{Y(2012, \mathsf{B}^+ \to \mathsf{J}/\psi\,\mathsf{K}^+)} = 1400 \frac{400\,000\frac{40}{17}}{600\,000} = 2200$$

Trigger: 2012

- L1 $p_T(\mu_1) > 3$ and $p_T(\mu_2) > 3$ GeV and $|\eta(\mu_1) \eta(\mu_2)| < 2.2$
- HLT \blacktriangleright single muon $p_T > 3.5 \text{ GeV}$
 - dimuon $p_T > 6.9 \,\text{GeV}$
 - $1 < m(\mu\mu) = q < 4.8 \, {
 m GeV}$
 - $L/\sigma > 3$ w.r.t. beamspot
 - Vtx CL > 10%

Trigger: 2016

L1 • $p_T(\mu_1) > 11(12)$ and $pT(\mu_2) > 4(5)$ GeV

or

- ► $p_T(\mu_1) > 0$ and $p_T(\mu_2) > 0$ and $|\eta(\mu_1)| < 1.6(1.4)$ and $|\eta(\mu_2)| < 1.6(1.4)$ and Opposite Sign and $|\eta(\mu_1) - \eta(\mu_2)| < 1.8$
- $\mathsf{HLT} \models \mathsf{single} \mod p_T > 4 \, \mathsf{GeV}$
 - dimuon pT > 6.9 GeV
 - $1 < m(\mu\mu) = q < 4.8 \, {
 m GeV}$
 - $L/\sigma > 3$ w.r.t. beamspot
 - ▶ Vtx *CL* > 10%

First Look of 2016 Data with B0ToKstMuMu

 $B^0 \rightarrow K^{0*}\mu^+\mu^-$: HLT_DoubleMu4_LowMassNonResonantTrk_Displaced_v7 $B^0 \rightarrow K^{0*}J/\psi$: HLT_DoubleMu4_IpsiTrk_Displaced_v7

-

315

LHCb

- Luminosity will not increase as fast as CMS: $L \sim 5 \, {\rm fb}^{-1}$ in Run2
- ▶ but the trigger is way more favourable: same eff as in 2012
- can expect to double the statistics at the end of Run2
- ▶ Also K^{*}ee, $\Lambda_b \rightarrow \Lambda \mu \mu$, LFU in K^{*} $\ell \ell$
- Belle2
 - \blacktriangleright Very clean environment, but the number of B is "small" compared with LHC: $\sim 200~ev/ab$
 - ▶ for charged final state, typically LHCb is competitive/dominant
 - Will reach 50 ${
 m ab}^{-1}$ by \sim 2023
 - if we extrapolate from Belle: 13 000 events per ℓ channel
 - also $K^* \tau \tau$ possible
 - very interested in lepton universality test
 - ▶ also channels $B_s^0 \to \phi \ell \ell$ and $B \to X_s \ell \ell$

- Limited feedback from charged K group
- Using the ratio of B^0 to B^+ in 2012, and the expected yield for B^0 , we can expect 200 events for B^+ in 2016 dataset
- Possible to redo the current analysis with 2 bins in $q^2 < m^2({
 m J}/\psi)$?
- not enought for a full angular analysis, not even with full 2017 dataset

From ^[Nachman and Rubbo(2016)] reported by M. Pierini: do not use a dedicated trigger, but look for B decays in any trigger among the PU vertexes. Zero Bias Trigger Some back-on-the envelope computation

- HLT rate: 1 kHz
- \bullet LHC dutycycle: 100 days for $10^5~\text{s/day.}$ Total: $5\cdot10^{10}$ triggers
- PU average 40, total pp interaction in total $2 \cdot 10^{11}$
- $\frac{\sigma pp
 ightarrow bb}{\sigma min \ bias} \sim 1\%$
- $N(bb) \sim N(B^0) \sim 2 \cdot 10^9$
- $BR(B^0 \rightarrow K^* \mu \mu) \sim 1 \cdot 10^{-6}$
- $\bullet\,$ So, we expect roughly $2\cdot10^3$ events, w/o considering acceptance ($\sim10\%)$ and efficiency
- expected yield $\sim \mathcal{O}(100)$ events imes efficiency $(1\cdot 10^{-3})$.
- Maybe if we could run the displaced HLT trigger on all L1 seeds (so 1 $kHz \rightarrow 100 kHz$): but can we?

Any chance for lepton universality?

Recent results from LHCb: ^[LHCb(2017)] ratio of $\frac{B^0 \rightarrow K^* \mu \mu}{B^0 \rightarrow K^* ee} \sim 0.67$ Lepton universality violated?

```
\mathbf{X}^{*0} = \begin{bmatrix} 0.660^{+0.110}_{-0.070} \pm 0.024 & \text{for } 0.045 < q^2 < 1.1 \, \text{GeV}^2/c^4 \\ 0.685^{+0.113}_{-0.069} \pm 0.047 & \text{for } 1.1 < q^2 < 6.0 \, \text{GeV}^2/c^4 \end{bmatrix}
```

$$N({f K}^*\mu\mu)=285(353)$$
 Low (central) q^2
 $N({f K}^*{
m ee})=89(111)$ Low (central) q^2

Can we repeat the measure?

- Short answer: no. We do not have a trigger for low pT electron
- And very little chance to develop one at L1.
 - True, but we can maybe do something at HLT also for electron, using L1-less idea;
 - prescaled Low-Pt electron trigger might be better
- Major problem would be CPU-time and data reduction, but maybe it is worth a shot.
- if we can collect ${\cal O}(100)$ events in electron channel by 2017, a $\sim 10\%$ measurement migh be possible. . .

1 = 9 Q (P

- B⁰ SL, Alessio (Padova), Mauro, Sara, Paolo (MIB), Dayong, Linwei (PKU): all have expressed interest
 - ▶ The analysis is not easy, and takes significant time and effort
 - Initial workplan, ideas, preliminary work in place
 - need a robust estimate of yield and balcground
 - ▶ goal should be to have a full angular analysis (a al LHCb) with Run2 dataset: probably the statistics will be enough by the end of 2017.
 - If we are not able to improve the efficiency (trigger, selection) the yield gap with LHCb will not be reduced
- B^+ Geng to finish 8 TeV analysis, will graduate
 - next year would need additional people to do for 13 TeV
 - \blacktriangleright PKU will try to find someone else to work on B^+
- LFU very challeging, but the interest can be very high.
- ther $\blacktriangleright \phi \mu \mu$: some initial work shown in 2016
 - Λ_b angular analysis maybe?
 - $\star\,$ The current trigger is not suitable, given the lifetime of $\Lambda\,$

Additional or backup slides

三日 のへで

・ロト ・回ト ・ヨト ・ヨト

- [LHCb(2016)] LHCb. Angular analysis of the $B^0 \rightarrow K^* \mu^+ \mu^-$ decay using 3 fb⁻¹ of integrated luminosity. *JHEP*, 02:104, 2016. doi: 10.1007/JHEP02(2016)104.
- [ATLAS(2017)] ATLAS. Angular analysis of B⁰_d → K^{*}µ⁺µ⁻ decays in pp collisions at √s = 8 TeV with the ATLAS detector. Technical Report ATLAS-CONF-2017-023, CERN, Geneva, Apr 2017. URL http://cds.cern.ch/record/2258146.
- [Belle(2017)] Belle. Lepton-Flavor-Dependent angular analysis of $B \to K^* \ell^+ \ell^-$. Submitted to PRL, 2017.
- [CMS(2016)] CMS. Measurement of the total and differential inclusive B^+ hadron cross sections in pp collisions at $\sqrt{s} = = 13$ TeV. Submitted to: Phys. Lett. B, 2016.

[Nachman and Rubbo(2016)] Benjamin Nachman and Francesco Rubbo. A Bottom Line for the LHC Data by Leveraging Pileup as a Zero Bias Trigger. 2016.

[LHCb(2017)] LHCb. Search for new physics with b → sℓℓ decays at lhcb. Technical report, Apr 2017. URL http://lhcb-doc.web.cern.ch/lhcb-doc/presentations/Seminars/Cern_Seminar_Bifani.pdf. LHC Seminar, CERN, Simone Bifani 2017-04-18.