P5' Status Report

Reamining systematics and approximate profiled FC or "How we spent our xmas vacation"

Stefano Lacaprara for the P'_5 group

stefano.lacaprara@pd.infn.it

INFN Padova

BPAG meeting, CERN, January 10, 2017

- We have estimated the remaining systematics uncertainties, only one missing;
 - Efficiency shape
 - Mass distribution
 - Feed-through background
 - Uncertainty from fixed pdf parameters Still missing
 - $\star\,$ Will describe the proposed solution, after the discussion with the StatCom
- Statistical uncertainties
 - After long and hard discussion with StatCom, against our scientific opinion, validated with data, the outcome was that **none** of the many methods we proposed to estimate the statistical uncertainties were good enough,
 - ▶ we had implement yet a different method to compute the statistical uncertainty;
 - $\star\,$ the proposed solution is to build the Neyman construction
 - $\star\,$ the full 2D construction is simply impossible: time estimate $\mathcal{O}(y\textit{ears})$
 - * instead, we agreed upon a 1D FC approach by profiling the likelihood on data at fixed P_1 (P'_5) values.
 - here will describe the procedure and preliminary results;

ELE DOG

- Fit high statistics control regions (J/ ψ/ψ (2S)) usig the efficiency and compare F_L with word-average values
- J/ψ 165 000 signal events
 - $F_L = 0.537 \pm 0.002$ (stat) vs 0.571 ± 0.007 (stat+syst)
- $\psi(2S)$ for completeness also here, lower stat:
 - F_L = 0.538 ± 0.008 (stat) vs $0.463^{+0.028}_{-0.040}$ (stat+syst)
 - Then uncertainties on F_L is propagated (with 200 toy experiments) to other bins

q^2 bin	P_1	P_5'
0	± 0.017	± 0.005
1	± 0.048	± 0.060
2	± 0.093	± 0.065
3	± 0.094	± 0.045
5	± 0.083	± 0.059
7	± 0.100	± 0.060
8	± 0.068	± 0.041

- it is used in the final fit on data
 - pdf used is a two-gaussian with common mean
 - separately for correctly and wrongly tagged events
 - \blacktriangleright the parameters (mean, four σ and two ratios) are taken from the high statistics MC
- we use the two control samples (J/ ψ , ψ (2S)) to fit all params of the mass distribution and compare the results on P_1 and P_5'
- The maximum changes in the measured values in the two control channels when the parameters are varied are taken as the systematic uncertainty for all q^2 bins.
- The maximum change of P_1 is 0.012, of P'_5 is 0.019.

Systematics: Feed-through background

- In bins just below or above the resonances, there could be a contamination from $B^0 \to J/\psi K^{*0}$ and $B^0 \to \psi' K^{*0}$ feed-through events
- Feed-through is modelled by a dedicated pdf for bin 3 and 5, using control region simulation

An example for bin 3 just below the

Fit with additional pdf component

イロト イポト イヨト イヨト

(barely visible in purple)

- In the final pdf some of the parameters (F_L , F_S , and A_S) are fixed from BPH-13-010
- Our initial idea was to get uncertainties (and correlation) from previous work (based on same dataset) and propagate to P_1 and P_5'
 - fit with fixed values randomly chosen via a 3D gauss around (F_L , F_S , and A_S)
 - preliminary results were produced (not the most important syst for any bin)
 - but we got some criticism from StatCom:
 - $\boldsymbol{\star}\,$ we would have not taken into account the correlation between the fixed
- Different approach based on toy (once again!)
 - generate a large statistics $[\mathcal{O}(100 \times \text{Data})]$ toy using as pdf the one with data best fit parameters;
 - fit the toy with all parameters free to float
 - compare the statistical errors of P_1 and P'_5 with the ones of a fit with three params fixed;
 - syst uncert to reproduce the scale factor
 - ▶ the scale factor between free and partially-fixed fit is precisely the correlation coefficient
 - * see e.g. <u>Bivariate Normal Distribution</u>
- Unless there are objection, we will proceed with this second option.

One dimensional Feldman-Cousins approach, profiling the likelihood on data at fixed P_1 (P'_5) values.

Procedure description in the PAS

To ensure correct coverage for the uncertainties of the angular observables, the Feldman-Cousins method ^[?] is used with nuisance parameters. Two main sets of pseudo-experimental samples are generated to compute the coverage for the two angular observables P_1 and P'_5 , respectively. The first (second) set, used to compute the coverage for P_1 (P'_5), is generated by assigning values to the other observables as obtained by profiling the likelihood on data at fixed P_1 (P'_5) values. When fitting the pseudo-experimental samples the same fit procedure as in data is applied.

What it means in the following, together with preliminary results

- start from the 2D $\mathcal{L}(P_1, P'_5)$ computed on data, taking into account the physical boundaries
- Then we profile it vs P_1 and P'_5 , respectively
 - if we hit a physical boundary, the minimum can be along the boundary itself
- Then we generate 100 (data-like size) toys using as input parameters P_1 and P'_5 .
 - To save CPU time not for all points, but we start around $\Delta \log \mathcal{L} = 0.5$

Procedure description (cont'ed)

Each toy is fitted with the full pdf as done for data

- we repeat the fit with 20 different set of 20 initial values of P_1 and P_5'
 - the 20 points are chosen randomly a 2D gaussian distribution around the toy generator point;
 - or around the min of a fully free fit if it converges
 - the results of the 20 fits provide 20 likelihood values in 20 sets of (P_1, P_5') ,
 - to find the absolute max, we fit the 20 values with a 2D gauss function
 - the max must be inside the physical region
- Eventually, we have 100 toys, and 100 values for the likelihood.

- We compute $\Delta \log \mathcal{L}$ for each toy (compared with the min along the profile) [black histo] \rightarrow
- and $\Delta \log \mathcal{L}$ for data for that gen point [red line] \rightarrow
- ratio=(# toys with DLL(toy)<DLL(Data))/(#toys)
- If ratio < 68.27% [green area] \rightarrow then generation point is inside the 1σ boundary for data, otherwise it's outside.
 - In principle there should be 100 toys
 - some failure (10-15%) due to gauss2D fit failure to be investigated
 - some job failing (batch system): recover
 - Should we fit the DLL(toys) distribution? With what? χ²(#DoF?)?
- repeat for $P_1(P'_5)$ upper(lower) bound: 4 "directions"

One example of DLL toy distribution compared with DLL(Data) (red)

- The procedure is complex, and very time consuming
 - ▶ Each toy, for which we scan 20 points, takes about 1h of CPU
 - Each Gen Point has 100 toys
 - ▶ We need to evaluate approx 5-10 GenPoints per directions (×4), for each bin (×7)
 - ▶ The math is left as a simple exercise to to class hint $\approx 3.5 \cdot 10^5$ fits, > 10kjobs, $O(1 \cdot 10^5)$ CPU-hours, babysitting time you-don't-want-to-know
- Lot of babysitting!
 - \blacktriangleright Each time a set of GenPoint finish, we have to evaluate if we crossed the 1σ boundary
 - ► if not, decide which new GenPoints should be submitted
- On top of that, the local batch system we are using is not working well
 - If we submit at once too many jobs, it just collapses, leaving the jobs in a weird state which must be recovered by hand. Happened twice last week.
 - ▶ We have a full support from local IT, so situation is improving, but still quite close to a nigthmare
- Have I said lot of babysitting? It is not, by all means, just CPU

ELE DOG

Statistical uncertainties

- We have implemented the 1D likelihood profiling FC
- Running it takes an awful lot of CPU and human time in babysitting;
- Preliminary results have been shown;
 - \blacktriangleright The crossing from inside to outside 1σ is not as clear as expected
 - * More gen point to be evaluated already ran, to be resubmitted
 - ★ Try a linear fit of the ratio;
 - ★ Try to increase the # of toys more CPU and more babysitting, hurrah!
 - ★ Investigate the failed gauss2D fit
 - When the crossing is clear, the 1σ boundaries are quite close to the $\Delta \log \mathcal{L} = 0.5$ surprisel^a

^aNo, wait. We did proved that, no surprise, sorry.

ELE SOO

Systematics uncertainties

- Almost all done;
- only one missing, but we have a plan how to evaluate it;
- it should not take long, just a matter to find the time to run the free fit on large toy.

Documentation

- We are updating constantly the documentation (PAS and AN) as soon as we have stable results;
- We still strongly want to go to Moriond!.

3 3

Additional or backup slides

ション キョン キョン キョン キョン シック

