Status update on $B^0 \rightarrow \eta' (\rightarrow \eta \pi^+ \pi^-) K_S^0$ Time Dependent \mathcal{LP} analysis

Stefano Lacaprara

stefano.lacaprara@pd.infn.it

INFN Padova

WG3 kickoff meeting, KEK, march, 10th, 2016

A sensitivity study for Time-Dependent CP violation analysis in the ${\sf B}^0\to\eta'{\sf K}^0$ channel, a charmless $b\to {\sf s}q\bar{q}$ decay

- CP asymmetry from time-dependent decay rate into CP eigenstates;
- not as sensitive as b ightarrow c $qar{q}~(\sin 2\phi_1)$
 - $S_{\eta' \kappa^0} = \sin 2\phi_1^{e\!f\!f}$ tightly related to $\sin 2\phi_1$ $\Delta S_{\eta' \kappa^0}$ can be shifted more than SM prediction in case new physics is present in the loop
- $\bullet~{\rm Similar}~{\rm to}~{\rm B}^0\to\phi{\rm K}^0_{\rm S}$
 - more complex final state;
 - ▶ large BR: $\sim 6.6 \cdot 10^{-5} ~(\sim 10 \times \text{BR}(\text{B}^0 \rightarrow \phi \text{K}^0_{\text{S}}))^{[\text{CLEO}(1998)]}$
 - ► actual uncertainties **statistically dominated** $\sigma_{stat} = 0.07, \sigma_{syst} = 0.03^{[Belle(2014)]}$
 - > projected for 50 ab $^{-1}$ $\sigma_{stat} = 0.008, \sigma_{syst} = 0.008^{[Urquijo(2015)]}$
 - no competition from LHCb (neutrals);

- first presented at last B2GM [link];
- today concentrate only in final state with $K^0_S \rightarrow \pi^+ \pi^-$;
 - neglecting $K^0_S \rightarrow \pi^0 \pi^0$ and K^0_L
- final states considered:
 - $\eta'(\to \eta_{\gamma\gamma})\pi^+\pi^-)$
 - $\eta'(\rightarrow \eta_{3\pi})\pi^+\pi^-)$
- moved to new version rel-00-06-00;
- analyzed full background BGx1 available statistics (200 fb⁻¹);
- added peaking background (mixed and charged);
 - detailed selection breakdown
- update/corrige on Δt resolution,
 - signal and tag side resolution on Δz ;
- continuum suppression status;
- started with multi dimensional fit.

S.Lacaprara (INFN Padova)

good candidate selection
$${\sf B}^0 o \eta' (o \eta_{\gamma\gamma} \pi^+ \ \pi^-) {\sf K}^{0+-}_{\sf S}$$

• Reconstruct decay chain with mass constrains for η , η' , K_{S}^{0} , • vertex only (w/o mass) for B^{0}

 $\blacksquare \ \eta \to \gamma \gamma:$

- ▶ gamma:all: $0.06 < E_{\gamma} < 6 \text{ GeV},$ -150 < $clus_{time} < 0, E_9/E_{25} > 0.75$
- ▶ $M(\eta_{\gamma\gamma}) \in [0.52, 0.57]$ GeV;
- $\blacksquare \ \eta' \to \eta_{\gamma\gamma} \pi^+ \pi^-:$
- pi:all
- $\Delta \log \mathcal{L}(\pi, \mathsf{K}) > -10;$ new
- ▶ $d_0(\pi^{\pm}) < 0.08$ mm;
- ► $z_0(\pi^{\pm}) < 0.1$ mm;
- ▶ N hits_{PXD} $(\pi^{\pm}) > 1$
- ▶ $M(\eta') \in [0.93, 0.98]$ GeV;

if $N_{cands} > 1$, select candidate with highest P-value_{vtx}($B_0, \eta', \eta, \kappa_S^0$)

$PBz \rightarrow \eta' K_S^0$

KEK, 10/3/2016

 $\blacksquare \mathsf{K}^{\mathsf{0}} \to \pi^{+}\pi^{-}:$

- K_S0:mdst
- $M(K^0_S \to \pi^+\pi^-) \in [0.48, 0.52] \text{ GeV};$
- $\blacksquare B^0 \to \eta' (\to \eta_{\gamma\gamma} \pi^+ \pi^-) K_S^{0^{+-}}$
- $M_{bc} > 5.25 \, \text{GeV};$
- ► $|\Delta E| < 0.1 \, \text{GeV};$
- ▶ P-value_{vtx} $(B_0, \eta', K_S^0) > 1 \cdot 10^{-5}$

Using full MC5 available statistics: 2 MEv

good candidate selection $B^0 \rightarrow \eta' (\rightarrow \eta_{3\pi} \pi^+ \pi^-) (K^0_S \rightarrow \pi^+ \pi^-)$:

- Reconstruct decay chain with mass constrains for η, η', K⁰_S,
 vertex only (w/o mass) for B⁰
 π⁰.
 - ▶ gamma:all: $0.06 < E_{\gamma} < 6 \text{ GeV}, -150 < clus_{time} < 0, E_9/E_{25} > 0.75$
 - $M(\pi^0) \in [100, 150]$ MeV
 - $\eta \to \pi^+ \pi^- \pi^0:$
 - ▶ pi:all
 - $\Delta \log \mathcal{L}(\pi, \mathsf{K}) > -10;$ new
 - ▶ $M(\eta_{3\pi}) \in [0.52, 0.57]$ GeV;
 - $d_0(\pi^{\pm}) < 0.08$ mm;
 - ► $z_0(\pi^{\pm}) < 0.1$ mm;
 - N hits_{PXD} $(\pi^{\pm}) > 1$

 $\ \, \eta' \to \eta_{3\pi} \pi^+ \pi^-:$

- ▶ $M(\eta') \in [0.93, 0.98]$ GeV;
- $\blacksquare \mathsf{K}^0 \to \pi^+ \pi^-:$
- ► K_S0:mdst
- $M(K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \in [0.48, 0.52] \text{ GeV};$
- $\blacksquare \ \mathsf{B}^{\mathsf{0}} \to \eta' (\to \eta_{\gamma\gamma} \pi^+ \ \pi^-) \mathsf{K}^{\mathsf{0}^{+-}}_{\mathsf{S}}$
- ▶ $M_{bc} > 5.25 \, \text{GeV};$
- ▶ $|\Delta E| < 0.15 \, \text{GeV};$
- $P\text{-value}_{vtx}(B_0, \eta', K_S^0) > 1 \cdot 10^{-5}$

if $N_{cands} > 1$, select candidate with highest P-value_{vtx}(B_0, η', η, K_S^0)

Reco eff is as good as $\eta_{\gamma\gamma}$ channel. 50% eff drop due to poor resolution on ΔE , M_{η} , $M_{\eta'}$ all coming from π^0 reconstruction in $\eta \to \pi^+ \pi^- \pi^0$ decay

S.Lacaprara (INFN Padova)

$$PBz \rightarrow \eta' K_{a}$$

Good candidates distributions

S.Lacaprara (INFN Padova)

 $PBz \rightarrow \eta' K_S^0$

NB: bug found after presentation at last B2GM. Wrong reso reported. Now corrected

S.Lacaprara (INFN Padova)

$\sum_{z \in T} \Delta z$ resolution for signal and tag vertexes

$\sum_{z \in T} \Delta z$ resolution for signal and tag vertexes

 $\Delta z(\text{signal}) = 69.5 \ \mu m$ for $\eta_{\gamma\gamma}$ and 47.5 μm for $\eta_{3\pi}$ $\Delta z(\text{tag}) = 36 \ \mu m$ for both NFN

- Background MC sample **BGx1**
- single skim for both $K_{S}^{0} \rightarrow \pi^{+}\pi^{-}$ channels $(\eta_{\gamma\gamma}, \eta_{3\pi})$;
 - Not skimming for $K_S^0 \to \pi^0 \pi^0$ final state: problem with memory, jobs crashed.
 - my guess combinatorics some time too large?
 - Should I try an harder skimming?
- Using all available statistics: $\int \mathcal{L} dt = 200 \text{ fb}^{-1}$;
 - Skim produced at KEKCC (LSF)
 - Skim output moved to local sorage in Padova
 - First from KEKCC to Naples Tier2, then to Padova
 - much better bandwidth than direct trasnfer!
- Numbers before cut on continuum discriminating variable

${\sf B}^{\sf 0} o \eta' (o \eta_{\gamma\gamma}\pi^+ \; \pi^-) {\sf K}^{{\sf 0}^{+-}}_{\sf S}$						
Sample	# Ev (M)	Skim (M)	$\epsilon_{\it skim}$	pre-sel	sel	ϵ_{sel}
иū	321	2.33	$0.72\cdot 10^{-2}$	52353	673	$2.10\cdot 10^{-6}$
dd	80.2	.617	$0.77\cdot 10^{-2}$	14568	181	$2.26 \cdot 10^{-6}$
s s	76.6	.807	$1.05\cdot 10^{-2}$	14801	126	$1.64\cdot 10^{-6}$
сē	266	3.85	$1.45\cdot 10^{-2}$	71112	924	$3.48\cdot10^{-6}$
$B^0 \overline{B}^0$	111	.123	$0.11\cdot 10^{-2}$	601	14	$0.13\cdot 10^{-6}$
B^+B^-	106	.130	$0.12\cdot 10^{-2}$	504	7	$0.07\cdot 10^{-6}$
total	960	2.662	$0.82 \cdot 10^{-2}$	153939	1925	$2.00\cdot 10^{-6}$
$B^0 \to \eta' (\to \eta_{3\pi} \pi^+ \pi^-) (K^0_S \to \pi^+ \pi^-)$						
Sample	# Ev (M)	Skim (M)	$\epsilon_{\it skim}$	pre-sel	sel	$\epsilon_{\it sel}$
иū	321	2.33	$0.72\cdot 10^{-2}$	153401	83	$0.26\cdot 10^{-6}$
dā	80.2	.617	$0.77\cdot 10^{-2}$	41965	31	$0.39\cdot 10^{-6}$
<i>s</i> 5	76.6	.807	$1.05\cdot 10^{-2}$	60287	27	$0.35\cdot 10^{-6}$
сī	266	3.85	$1.45\cdot 10^{-2}$	378406	240	$0.90\cdot 10^{-6}$
$B^0 \overline{B}^0$	111	.123	$0.11 \cdot 10^{-2}$	8795	17	$0.15\cdot 10^{-6}$
B^+B^-	106	.130	$0.12\cdot 10^{-2}$	9368	2	$0.02\cdot 10^{-6}$

S.Lacaprara (INFN Padova)

Background distributions

S.Lacaprara (INFN Padova)

KEK, 10/3/2016 14 / 23

Background distributions

S.Lacaprara (INFN Padova)

 $PBz \rightarrow \eta' K_s^0$

KEK, 10/3/2016 15 / 23

- Start playing with continuum suppression variable;
- Looked at distribution for signal and continuum for all standard 30 variables;
- Known problem with cos_{TBTO}: signal is more jet-like than continuum background;
- other variables are exceptionally discriminating
 - eg: KSFW(et), KSFW(hso10), KSFW(hoo0)
 - Very strong correlation among these three, both for signal and background;
- Overall discriminating power of MVA based on 30 variables is extreme!
- Tried to play with variables
 - remove the three above
 - \blacktriangleright reduce total number of variables used (30 \rightarrow 20 \rightarrow 10), by removing the ones with lower rank (BDT)

distributions for all 30 variables in backup

TMVA for continuum suppression

S.Lacaprara (INFN Padova)

KEK, 10/3/2016 19 / 23

TMVA for continuum suppression (II)

S.Lacaprara (INFN Padova)

/NP (N/L

 $PBz \rightarrow \eta' K_s^0$

- Try to work toward a multidimensional fit to extract parameter of interest (**S** and **C**)
- using package RooRarFit with root6
- reusing Alessandro work as much as possible
- Variables used in the fit:
 - ► (∆t)
 - ► ΔE
 - ► M_{bc}
 - ► *M*_{η'}
 - (continum suppression variable not yet)
- So far, fit works w/o time-dependent part
- Trying to generate toys, but not yet there

PDF fit results examples

S.Lacaprara (INFN Padova)

- Some progress since previous presentation;
 - not as much as I'd have liked;
- Some of the missing pieces are in place;
 - full background, including peaking;
 - continuum suppression technically there;
 - first working multidimensional fit;

TODO:

- undesrtand/fix for continuum suppression;
- Work on fit
 - ★ time dependent part, toys, stability, ...
- redo for $K_S^0 \to \pi^0 \pi^0$
- Still on track for B2TIP
- help is welcome!

Additional or backup slides

Best candidate distributions

Good candidates distributions

S.Lacaprara (INFN Padova)

 $PBz \rightarrow \eta' K_S^0$

Best candidate distributions

Background distributions

S.Lacaprara (INFN Padova)

 $PBz \rightarrow \eta' K_S^0$

KEK, 10/3/2016 6 / 17

S.Lacaprara (INFN Padova)

KEK, 10/3/2016 9 / 17

S.Lacaprara (INFN Padova)

KEK, 10/3/2016 10 / 17

Background

Correlation Matrix (background)

Signal

Correlation Matrix (signal)

 $PBz \rightarrow \eta' K_S^0$

 γ^2 / ndf = 0.542

ξ = -49.2 ± 11 E_{and} = 5.28686 ± 0.00011 G

A RooPlot of "M_{bc}"

- [CLEO(1998)] CLEO. Observation of high momentum η' production in B decays. PRL, 81:1786, 1998. doi: 10.1103/PhysRevLett.81.1786. URL http://link.aps.org/doi/10.1103/PhysRevLett.81.1786.
- [Belle(2014)] Belle. Measurement of time-dependent cp violation in $b_0 \rightarrow \eta' k_0$ decays. Journal of High Energy Physics, 2014 (10):165, 2014. doi: 10.1007/JHEP10(2014)165. URL http://dx.doi.org/10.1007/JHEP10%282014%29165.
- [Urquijo(2015)] Phillip Urquijo. Comparison between belle ii and lhcb physics projections. Technical Report BELLE2-NOTE-PH-2015-004, Apr 2015.