$B^0 \rightarrow \eta' (\rightarrow \eta \pi^+ \pi^-) K^0_S$ Time Dependent $\mathcal{L} \mathcal{P}$ sensitivity study for Bellell

Stefano Lacaprara

stefano.lacaprara@pd.infn.it

INFN Padova

B2GM, Tsukuba, 21 June 2016

- Channel have been analyzed in B-factory^[BABAR(2009), Belle(2007), Belle(2014)];
- analysis based on quasi-two body approach;
- $\sin 2\phi_1^{eff} = +0.68 \pm 0.07 \pm 0.03$ [Belle(2014)] $= +0.57 \pm 0.08 \pm 0.02$ [BABAR(2009)]
- uncertainties are mostly statistical (\sim 3500 events for all final states);
 - ▶ syst: ±0.025 from Δt resolution, ±0.014 from vertexing, ±0.013 from $\eta' K_s^0$ fraction;

- projected for 50 ${\rm ab}^{-1}$ $\sigma_{stat}=0.008, \sigma_{syst}=0.008^{[\rm Urquijo(2015)]}$
- no competition from LHCb

$$B^0 \rightarrow \eta' K_S^0$$

many decay channels available $B^0 o \eta' K^0$							
decay channel							
$\eta' o ho^0 (o \pi^+ \pi^-) \gamma$	BR=29%	not yet					
$\eta' ightarrow \eta \pi^+ \pi^-$	43%	today					
$\searrow \eta ightarrow \gamma \gamma$	40%	$\eta_{\gamma\gamma}$					
$\searrow \eta ightarrow \pi^+\pi^-\pi^0$	23%	$\eta_{3\pi}$					
$K_S^0 ightarrow \pi^+\pi^-$	69%	today					
${\cal K}^0_{\cal S} o \pi^0 \pi^0$	31%	just started					
K ⁰ _L		not yet					
$B_0 \to \eta' (\to \eta_{\gamma\gamma}/\eta_{3\pi}\pi^+\pi^-) K^0_{S}(\to \pi^+\pi^-)$	BR=19%						

- Complex final state, neutrals, large combinatorics;
- final states considered so far in red
- more to be studied $(\rho^0, \mathcal{K}^0_S \to \pi^0 \pi^0, \mathcal{K}^0_L)$

candidate selection: main cuts

- Reconstruct decay chain with mass constrains for π⁰, η, η', K⁰_S,
 vertex only (w/o mass) for B⁰ (more later)
 - $\blacksquare \pi^0, \eta_{\gamma\gamma}:$
 - $0.06 < E_{\gamma} < 6 \, {
 m GeV}, \; E_9/E_{25} > 0.75$
 - ▶ $M(\pi^0) \in [100, 150]$ MeV
 - $M(\eta_{\gamma\gamma}) \in [0.52, 0.57] \text{ GeV};$
 - $\qquad \qquad \blacksquare \ \eta' \to \eta_{\gamma\gamma} \pi^+ \pi^- :$
 - $d_0(\pi^{\pm}) < 0.08$ mm; $z_0(\pi^{\pm}) < 0.1$ mm;
 - ▶ N hits_{PXD} $(\pi^{\pm}) > 1$, PID
 - ▶ $M(\eta') \in [0.93, 0.98]$ GeV;

- $\eta' \to \eta_{3\pi} \pi^+ \pi^-:$
- $M(\eta') \in [0.93, 0.98]$ GeV;
- $\blacksquare \mathsf{K}^{\mathsf{0}} \to \pi^{+}\pi^{-}:$
- $M(K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \in [0.48, 0.52] \text{ GeV};$
- $\blacksquare \ \mathsf{B}^{\mathsf{0}} \to \eta' (\to \eta_{\gamma\gamma} \pi^+ \ \pi^-) \mathsf{K}^{\mathsf{0}^{+-}}_{\mathsf{S}}$
- ► M_{bc} > 5.25 GeV;
- $|\Delta E| < 0.1 \text{ GeV};$
- $\blacksquare B^0 \to \eta' (\to \eta_{3\pi} \pi^+ \pi^-) K_S^{0^{+-}}$
- ► $|\Delta E| < 0.15 \, \text{GeV};$

if $N_{cands} > 1$, select that with best reduced χ^2 for $\eta, \eta', \mathsf{K}^0_\mathsf{S}$ inv. masses

Efficiency and combinatorics

\frown
INFN
\mathcal{L}

channel	ϵ %	SxF %	cands/ev
$B^{0} \to \eta' (\to \eta_{\gamma\gamma} \pi^+ \pi^-) K^{0}_{S} (\to \pi^+ \pi^-)$	29.4	1.1	1.06
$B^0 \to \eta' (\to \eta_{3\pi} \pi^+ \pi^-) K^0_{S} (\to \pi^+ \pi^-)$	12.1	3.1	1.45
$B^{0} o \eta' (o \eta_{\gamma\gamma} \pi^+ \ \pi^-) K^{0}_{S} \ (o \pi^0 \pi^0)$	13.5	2.2	~ 5
$B^{0} \to \eta' (\to \eta_{3\pi} \pi^+ \pi^-) K^{0}_{S} (\to \pi^0 \pi^0)$	6.0	3.8	\sim 30

- Efficiency drop due to π^0 reco, likely to improve;
- presence of π^0 increase also combinatorics and signal cross feed SxF : signal event but with wrong particle association;
- $B^0 \rightarrow \eta' (\rightarrow \eta_{3\pi} \pi^+ \pi^-) K^0_S(\rightarrow \pi^0 \pi^0)$ not used in Belle and BaBar analysis.

\frown Vtx reco and Δt resolution: $\eta_{\gamma\gamma}$ channel

Pit the B₀ vertex from charged tracks; (π[±] from η' → ηπ[±])
 add also constraint from reconstructed K_S⁰ direction; (K_S⁰ → π⁺π⁻)
 add also constraint from B⁰ boost direction, transverse plane only.

With beamspot (x, y) & K_S⁰: No efficiency loss important improvement in Δt resolution $1.89 \rightarrow 1.62 \rightarrow 0.91 \ ps$

In both cases, Δt resolution better than in Belle, in spite of lower boost

- **Combinatorial**: from continuum background $e^+e^- \rightarrow u\bar{u}, d\bar{d}, s\bar{s}, c\bar{c}$
 - evaluated from M_{bc} side bands on real data
 - now from MC production: NB: still w/o machine background!
 - use Continuum Suppression variable
 - multivariate variables sensitive to event topology
 - ★ central (signal) vs jet-like (continuum)
 - ★ past issues w/ variables "fixed"
- **Peaking**: any other B decays possibly with real η' and/or K_S^0
 - evaluated from MC of generic $B^0\overline{B}^0$, B^+B^-
 - ★ actual $B^0 \rightarrow \eta' K^0$ removed.
- $\bullet\,$ Current results based on BGx0 production, namely w/o machine background
 - impact of machine background under study
 - signal w/ machine background already produced
- Next table numbers before Continuum Suppression cut

Background reduction (before CS cut)

Sample	иū	dd	<u>s</u>	сī	contiuum	$B^0\overline{B}^0$	B^+B^-	
Input ev (M)	1284	321	306	1063	2974	2160	2070	
$B^{0} o \eta' (o \eta_{\gamma\gamma} \pi^+ \pi^-) K^{0^{+-}}_{S}$								
$\epsilon_{sel} \ (\cdot 10^{-6})$	2.69	3.06	2.40	3.62	3.0	0.11	0.038	
ev for $300\mathrm{fb}^{-1}$	1247	369	275	1445	3335	13	6	
$B^0 \to \eta' (\to \eta_{3\pi} \pi^+ \pi^-) K^{0+-}_S$								
$\epsilon_{sel} \ (\cdot 10^{-6})$	0.34	0.54	0.17	1.50	0.76	0.14	0.02	
ev for $300{ m fb}^{-1}$	166	65	20	597	847	24	3	

- $\bullet\,$ Background reduction better for $\eta_{3\pi}$ than for $\eta_{\gamma\gamma}$
- $\begin{array}{l} \eta_{\gamma\gamma} & \text{mostly } u \bar{u} \text{ and } c \bar{c} \\ \eta_{3\pi} & \text{mostly } c \bar{c} \end{array}$
- peaking background is small
 - \blacktriangleright analyzed whole 5 ab^{-1} dataset from MC5
- preliminary study on w/ machine background shows similar rates

B⁰→η'(η(γγ) π⁺π⁻) K⁰_s(π⁺π⁻)

Working point

- Tight: BDT > 0.124, $\epsilon_{signal} = 50\%$, $(1 \epsilon_{background}) = 97.5\%$,
- Loose: BDT > -0.055, $\epsilon_{signal} = 95\%$, $(1 \epsilon_{background}) = 58\%$,

no cut: include the BDT in the likelihood

Likelihood fit

Multi dim. extended maximum likelihood fit to extract S and C. Pdf is of the form: $\begin{aligned} \mathcal{P}_{j}^{i} &= \underbrace{\mathcal{T}_{j}\left(\Delta t^{i}, \sigma_{\Delta t}^{i}, \eta_{CP}^{i}\right)}_{\text{time-dep part}} \prod_{k} \underbrace{\mathcal{Q}_{k,j}(x_{k}^{i})}_{\text{time integrated}} \\ \text{time-dependent part, taking into account mistag rate } (\eta_{f} = \pm 1 \text{ is CP state}): \\ f(\Delta t) &= \frac{e^{-|\Delta t|/\tau}}{4\tau} \Big\{ 1 \mp \Delta w \pm (1 - 2w) \end{aligned}$

$$\times \left[-\eta_f S_f \sin(\Delta m \Delta t) - C_f \cos(\Delta m \Delta t) \right] \right\}$$

Parameters:

variables (x_k) used, in addition to Δt

- M_{bc}
- ΔE

• Cont. Suppr.

• effective tagging efficiency: $Q = \epsilon (1 - 2w)^2 = 0.33$ • w = 0.21, $\Delta w = 0.02$

 Δt resolution as shown previously (convoluted)

• τ , Δm from PDG

S.Lacaprara (INFN Padova)

 $B^0 \rightarrow \eta' K_S^0$

PDF fit results examples

S.Lacaprara (INFN Padova)

 $B^0 \rightarrow \eta' K_S^0$

- Testing fit machinery with Toy MC;
- Yield estimated for $L = 300 \text{ fb}^{-1}$: $N(B\overline{B}) \sim 330 \cdot 10^6$
 - width of distribution related to the expected statistical uncertainty;
 - check also for bias;
 - ▶ input CP asymmetry parameter: S=0.7 C=0.0
 - testing two different CS scenarios:
 - ★ Tight
 - ★ Loose
 - ★ No cut
 - Partially embedded toys
 - ★ Signal and SXF from MC;
 - * Continuum and Peaking background from pdf;

 \checkmark Toy results $\mathsf{B}^0 o \eta' (o \eta_{\gamma\gamma} \pi^+ \pi^-) \mathsf{K}^{0^-}_{\mathsf{S}}$

Toy results
$$B^0 \rightarrow \eta' (\rightarrow \eta_{3\pi} \pi^+ \pi^-) K_S^{0^{+-}}$$
Loose

$$L = 300 \text{ fb}^{-1}$$
: $N_{sig} = 106$, $N_{sxf} = 25$, $N_{cont} = 360$, $N_{peak} = 27$

Preliminary results:

Par	ar Bias				
S (0.7)	0.708 ± 0.010	0.330			
C (0.0)	-0.013 ± 0.008	0.246			
nSig	110.2 ± 0.6	18.5			
Less events due to lower BR					
and reduced efficiency					

Belle¹ (772 · 10⁶ B
$$\overline{B}$$
): $N_{sig} = 104$, $\sigma_{S} = 0.21$, $\sigma_{C} = 0.18$
BaBar (467 · 10⁶ B \overline{B}): $N_{sig} = 105$, $\sigma_{S} = 0.26$, $\sigma_{C} = 0.20$

¹including also $\eta' \rightarrow \rho^0 \gamma$ S.Lacaprara (INFN Padova) $B^0 \rightarrow \eta' K_S^0$ B2GM 21/06/2016 18 / 19

- Almost a complete analysis chain for sensitivity study for ${\cal L} P$ in $B^0\to \eta' K^0_S$ channel;
- Presente at last B2TIP workshop;
- preliminary results are encouraging;
 - comparison with Belle and BaBar results looks fine;
- many thing to do:
 - include machine background (in progress)
 - complete $K_{S}^{0} \rightarrow \pi^{+}\pi^{-}$ channels;
 - study $K_{S}^{0} \rightarrow \pi^{0}\pi^{0}$ final states;
 - add $\eta'
 ightarrow
 ho^0 \gamma {\sf K}^{0^{+-}}_{\sf S} / {\sf K}^{0^{00}}_{\sf S}$ channel;
 - systematics uncertainties evaluation;
 - documentation

. . .

 $\bullet\,$ manpower: a new postDoc student from Padova, Alessandro Mordà, is joining me for this work at $\sim 50\%$

Additional or backup slides

good candidate selection $B^0 o \eta' (o \eta_{\gamma\gamma} \pi^+ \pi^-) K_S^{0^{+-}}$:

- Reconstruct decay chain with mass constrains for η, η', K⁰_S,
 vertex only (w/o mass) for B⁰
 - $\eta \to \gamma \gamma:$
 - ▶ gamma:all: $0.06 < E_{\gamma} < 6 \text{ GeV},$ -150 < $clus_{time} < 0, E_9/E_{25} > 0.75$
 - $M(\eta_{\gamma\gamma}) \in [0.52, 0.57]$ GeV;
 - $\blacksquare \ \eta' \to \eta_{\gamma\gamma} \pi^+ \pi^-:$
 - pi:all
 - $\Delta \log \mathcal{L}(\pi, \mathsf{K}) > -10;$ new
 - $d_0(\pi^{\pm}) < 0.08$ mm;
 - ► $z_0(\pi^{\pm}) < 0.1$ mm;
 - ▶ N hits_{PXD} $(\pi^{\pm}) > 1$
 - ▶ $M(\eta') \in [0.93, 0.98]$ GeV;

 $\mathbf{K}^{0} \to \pi^{+} \pi^{-}:$

- K_S0:mdst
- $M(K^0_S \to \pi^+\pi^-) \in [0.48, 0.52]$ GeV;
- $\blacksquare B^0 \to \eta' (\to \eta_{\gamma\gamma} \pi^+ \pi^-) K_S^{0^{+-}}$
- $M_{bc} > 5.25 \, \text{GeV};$
- $|\Delta E| < 0.1 \, \text{GeV};$
- P-value_{vtx} $(B_0, \eta', K_S^0) > 1 \cdot 10^{-5}$

if $N_{cands} > 1$, select candidate with highest P-value_{vtx}(B_0, η', η, K_S^0)

Selection breakdonw

Combinatorics Cands mult.: 1.88 Good cands mult.: 1.06

Efficiency	%
skim	57.0
preselection	46.1
good cands	30.5
MC true	29.4
SXF	1.1

Signal distribution $B^0 \rightarrow \eta' (\rightarrow \eta_{\gamma\gamma} \pi^+ \pi^-) K_S^{0^+}$

 $B^0 \rightarrow \eta' K_S^0$

INFŃ

good candidate selection $B^0 \rightarrow \eta' (\rightarrow \eta_{3\pi} \pi^+ \pi^-) K_S^{0^{+-}}$:

- Reconstruct decay chain with mass constrains for η, η', K⁰_S,
 vertex only (w/o mass) for B⁰
 π⁰:
 - ▶ gamma:all: $0.06 < E_{\gamma} < 6 \text{ GeV}$, -150 < $clus_{time} < 0$, $E_9/E_{25} > 0.75$
 - $M(\pi^0) \in [100, 150]$ MeV • $\eta \to \pi^+ \pi^- \pi^0$:
 - pi:all
 - $\Delta \log \mathcal{L}(\pi, \mathsf{K}) > -10$; new
 - $M(\eta_{3\pi}) \in [0.52, 0.57]$ GeV;
 - $d_0(\pi^{\pm}) < 0.08$ mm;
 - ► $z_0(\pi^{\pm}) < 0.1$ mm;
 - ▶ N hits_{PXD} $(\pi^{\pm}) > 1$

 $\eta' \to \eta_{3\pi} \pi^+ \pi^-:$

- ▶ $M(\eta') \in [0.93, 0.98]$ GeV;
- $\blacksquare \mathsf{K}^{\mathsf{0}} \to \pi^{+}\pi^{-}:$
- K_S0:mdst
- $M(K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \in [0.48, 0.52] \text{ GeV};$
- $\blacksquare B^0 \to \eta' (\to \eta_{3\pi} \pi^+ \pi^-) K_S^{0^{+-}}$
- $M_{bc} > 5.25 \, \text{GeV};$
- ► $|\Delta E| < 0.15 \, \text{GeV};$
- P-value_{vtx} $(B_0, \eta', K_S^0) > 1 \cdot 10^{-5}$

if $N_{cands} > 1$, select candidate with highest P-value_{vtx}(B_0, η', η, K_S^0)

Reco eff is as good as $\eta_{\gamma\gamma}$ channel.

50% eff drop due to poor resolution on M_{bc} , ΔE , M_{η} all coming from π^0 reconstruction in $\eta \to \pi^+ \pi^- \pi^0$ decay

$$B^0 \rightarrow \eta' K_s^0$$

Signal distribution $B^0 \rightarrow \eta' (\rightarrow \eta_{3\pi} \pi^+ \pi^-) K_S^{0^{+-}}$

 $B^0 \rightarrow \eta' K_S^0$

B2GM 21/06/2016 10 / 17

Continuum Suppression correlation matrix

Correlation Matrix (signal)

Correlation Matrix (background)

Toy results $B^0 \to \eta' (\to \eta_{\gamma\gamma} \pi^+ \pi^-) K_S^{0^{+-}}$ Tight CS

Toy results $B^0 \to \eta' (\to \eta_{\gamma\gamma} \pi^+ \pi^-) K_S^{0^{+-}}$ Loose CS

	This analysis*		Belle ^[Belle(2014)]			BaBar ^[BABAR(2009)]			
mode	(340 M B B)			(772 M B B)			(467 M B B)		
$\eta' \to \pi^{\pm} \eta$	N _{sig}	σ_{S}	σ_{C}	N _{sig}	σ_{S}	σ_{C}	N _{sig}	σ_{C}	σ_{S}
$\eta_{\gamma\gamma} K^{0^{+-}}_{S^{}}$	390	0.19	0.11	648	0.15	0.098	472	0.17	0.11
$\eta_{\gamma\gamma} K^{0}_{S}$	Just started			104	0.21^{\dagger}	0.18^{\dagger}	105	0.34	0.30
$\eta_{3\pi} K_S^{0^{+-}}$	106	0.33	0.25	174	0.26	0.18	171	0.26	0.20
$\eta_{3\pi} K_S^{0}^{00}$	Will try					Not u	sed		
$\eta' ightarrow ho^0 \gamma \mathrm{K_S^{0^{+-}}}$	Not yet		1411	0.098	0.069	1005	0.12	0.09	
$\eta' ightarrow ho^0 \gamma { m K_S^0}^{000}$	Not yet		162	0.21^{\dagger}	0.18^{\dagger}	206	0.33	0.26	

^{*}Very preliminary estimate based on toy MC, $L = 300 \text{ fb}^{-1}$ Warning: no machine background yet [†]Results combining $\eta' \rightarrow \pi^{\pm} \eta_{\gamma\gamma}$ and $\eta' \rightarrow \rho^{0} \gamma$

- [Williamson and Zupan(2006)] Alexander R. Williamson and Jure Zupan. Two body b decays with isosinglet final states in soft collinear effective theory. Phys. Rev. D, 74:014003, Jul 2006. doi: 10.1103/PhysRevD.74.014003. URL http://link.aps.org/doi/10.1103/PhysRevD.74.014003.
- [Gronau et al.(2006)] Michael Gronau et al. Updated bounds on *cp* asymmetries in $B^0 \rightarrow \eta' K_S$ and $B^0 \rightarrow \pi^0 K_S$. *Phys. Rev. D*, 74:093003, Nov 2006. doi: 10.1103/PhysRevD.74.093003. URL http://link.aps.org/doi/10.1103/PhysRevD.74.093003.
- [Belle(2014)] Belle. Measurement of time-dependent cp violation in $b_0 \rightarrow \eta' k_0$ decays. Journal of High Energy Physics, 2014 (10):165, 2014. doi: 10.1007/JHEP10(2014)165. URL http://dx.doi.org/10.1007/JHEP10%282014%29165.
- [Urquijo(2015)] Phillip Urquijo. Comparison between belle ii and lhcb physics projections. Technical Report BELLE2-NOTE-PH-2015-004, Apr 2015.
- [BABAR(2009)] BABAR. Measurement of time dependent cp asymmetry parameters in B^0 meson decays to ωK_S^0 , $\eta' K^0$, and $\pi^0 K_S^0$. *PRD*, 79:052003, 2009. doi: 10.1103/PhysRevD.79.052003. URL http://link.aps.org/doi/10.1103/PhysRevD.79.052003.
- [Belle(2007)] Belle. Observation of time-dependent cp violation in $B^0 \rightarrow \eta^{'} \kappa^0$ decays and improved measurements of cp asymmetries in $B^0 \rightarrow \varphi \kappa^0$, $\kappa^0_S \kappa^0_S \kappa^0_S$ and $B^0 \rightarrow j/\psi \kappa^0$ decays. PRL, 98:031802, 2007. doi: 10.1103/PhysRevLett.98.031802. URL http://link.aps.org/doi/10.1103/PhysRevLett.98.031802.

 $B^0 \rightarrow \eta' K_s^0$