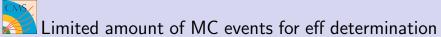
$B^0 ightarrow {\cal K}^{0*}({\cal K}\pi) \mu \mu$ full angular analysis Systematics

Stefano Lacaprara, Alessio Boletti


INFN Padova, Università di Padova

AFB meeting, CERN, 29 Oct 2015

3

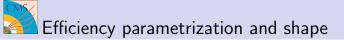
Some thoughts on systematics

- Limited amount of MC events for eff determination
- ernel width for KDE
- efficiency shape
- Simulation mismodeling
- wrong CP assignment
- ø background determination
- Ø MC derived pdf component
- angular resolution

n C

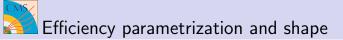
Split MC

- Split MC sample in N(=4) subsample;
- evaluate the efficiency via KDE for each sub sample ϵ_i , $i = 1, \ldots, N$
- perform N fit on MC and/or control samples $J/\psi \ \psi'(2s)$ and extract N set of angular parameters for each q^2 bin X_i ;
- compute spread of parameter X as RMS(X)
- systematics is $RMS(X)/\sqrt{N}$ (Is that correct, or it should be /N?)



Limited amount of MC events for eff determination (II)

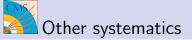
Toy MC


- alternative method
- get pdf for N and D of efficiency $\epsilon = \frac{N}{D}$ with full MC statistics;
- generate toy MCs for N and D with as many events as in the original MC, following the pdf
- \bullet apply KDE on the toy MC samples, and get back ϵ
- use these efficiencies to repeat the fit (as before) and take spread of output as systematics
- can be computational heavy

Kernel width for KDE

- The KDE use a kernel with a given width
- we tried several, and choose one as an acceptable compromise;
- evaluate the systematics associated to this choice by varying the width up and down and compare the fit results;
- Alternative: we do have adaptive width for some of the bins, we can compare the adaptive with the fixed width and get the syst.

Kernel width for KDE


- The KDE use a kernel with a given width
- we tried several, and choose one as an acceptable compromise;
- evaluate the systematics associated to this choice by varying the width up and down and compare the fit results;
- Alternative: we do have adaptive width for some of the bins, we can compare the adaptive with the fixed width and get the syst.

Efficiency shape

 From the control sample fit: compare fit results with PDG values (as in 2D analysis)

Simulation mismodeling

- Compare fit result on GEN (w/o efficiency) and RECO (w/ efficiency) (as in 2D analysis)
- Q: how much of this already includes kernel width and eff shape syst?

• As in 2D analysis

- wrong CP assignment
 - measure B^0 width with $K * (K\pi)J/\psi(\mu\mu)$ control sample
 - measure mistag ratio with $K * (K\pi) J/\psi(\mu\mu)$ control sample
 - fit N times data with mis-tag ratio randomly generated according to gaussian centered at nominal value and with σ from the previous two methods.
- background determination
 - modify the parametrization of background (+1 degree of pol)
- MC derived pdf component
 - \blacktriangleright signal mass shape: use J/ψ control sample, let mass shape free to float
- angular resolution
 - use generated angles in place of reconstructed ones, and compare.

- First toughts on systematics, starting from those considered in 2D analysis;
- No major show stopper, we can redo most of the work already done for 2D analysis;
- we have a workplan for efficiency related systematics;
- In all cases, we need to perform the fit many many times, as expected
- cannot progress much w/o the fitting code...
- Adding all this to the AN