$h \rightarrow bb$ kinematical fit for $A \rightarrow Zh \rightarrow \ell\ell bb$

Paolo Checchia, Tommaso Dorigo, **Stefano Lacaprara**, Mia Tosi, Alberto Zucchetta

INFN Padova

Hbb meeting, CERN, 12 December 2013

3

(日) (同) (三) (三)

Motivation

- We are searching for a resonant decay $A \rightarrow Zh \rightarrow \ell\ell bb$;
- the signal sensitivity depends on the 4-body ($\ell\ell bb$) mass resolution;
- which is dominated by the b-jets resolution;
- we can try b-jet energy regression, or
- ullet let's use the fact that the bb system is resonant for signal $h \to bb$
- and we know $M_h = 125.8 \pm 0.4 \pm 0.4;$

Two ways

- Brutally force $M_{bb} = M_h$;
- Kinematical fit *M*_{bb} to *M*_h, varying jets energy according to their resolution;

Analysis overview

• Preselection

- either HLT_Mu17_Mu8 or HLT_Ele17[...]Ele8[...] trigger fired;
- $N_{\ell} \ge 2$: $p_T > 20(10)$ GeV, \pm , same flavour, isolated ($PF_{iso}^{rel} < 0.15$);
- $N_{jets} \geq 2$: $p_T > 20$ GeV, $\Delta R_{jet,\ell} > 0.5$;

• Analysis cuts

- Z Selection: $80 < m_{\ell\ell} < 100 \ GeV$;
- b-tagging (CSV): jet₁ is CSVT, jet₂ CSVL;

 M_{300}

- ▶ h selection: 90 < m_{bb} < 140 GeV; today's topic!</p>
- Final selection is m_A dependent.

M_{250}

- $MET < 50 \ GeV$
- $HT > 100 \ GeV$
- $1 < \Delta R_{bb} < 3.25$

- $MET < 50 \ GeV$
- $HT > 100 \ GeV$
- $1 < \Delta R_{bb} < 3.25$
- $p_T^Z > 60 \ GeV$

M_{350}

- $MET < 50 \ GeV$
- HT > 125 GeV
- $1 < \Delta R_{bb} < 2.5$

• $p_T^Z > 80 \ GeV$

S.Lacaprara (INFN Padova)

AZh

Force $M_{bb} = M_b$

Kinematical fit M_{bb} to M_h

Summary

Force
$$M_{bb} = M_h$$

What it is about:

- Force the 4-momentum of bb system to have mass: M_{bb} = M_h scaling p_T and E, while η and φ stays fixed;
- Problem: should we force all bb pairs to M_h ?
 - or only those which are already "close"?
 - next slides will show results w/o and w/ selection 90 < m_{bb} < 140 GeV
 - in next section a better approach.
- Look at expected limit (CLs) using $M_A = M_{\ell\ell bb}$ shape, with reasonable assumption for syst (will show our work on syst soon);
- Focus on changes between the three methods
 - no constraint;
 - constraint for all bb pairs;
 - 3 constraint for bb pairs which pass: $90 < m_{bb} < 140$ GeV.

AZh

3

(日) (周) (三) (三)

Kinematical fit M_{bb} to M_h

Summary

N

M_A width, expected limit and Conclusion I

- Forcing M_{bb} to M_h reduces significantly the width of the 4-body invariant mass M_A = M_{llbb};
- If it is applied to all events, the S/B worsen a lot since we cannot select events with M_{bb};
- If it is applied only to events passing a selection on M_{bb} : 90 < M_{bb} < 140 GeV, the S/N is the same (by construction) but the reduced width improves the expected limit.

Force $M_{bb} = M_h$

Kinematical fit M_{bb} to M_h

Summary

Kinematical fit of M_{bb} to M_h

(日) (周) (三) (三)

Formulas

- B-jets_i 4-momentum: $p_{b_i}(\alpha_i) = \{p_T + \alpha_i \sigma_{p_T}, \eta, \phi, E + \alpha_i \sigma_E\}$
- Minimize χ^2

$$\chi^{2}(\alpha_{1},\alpha_{2}) = \left(\frac{M_{bb}(\alpha_{1},\alpha_{2}) - M_{h}}{\sigma_{M_{h}}}\right)^{2} + \alpha_{1}^{2} + \alpha_{2}^{2}$$

- $\sigma_{p_T,E}$ is jet resolution
 - ***** Assume $\sigma_{p_T}/p_T = \sigma_E/E$
 - ★ depend on p_T, η^a
 - * $\sigma_{
 ho_T,E} \sim \mathcal{O}(10-20\%)$ (some plots in backup)
 - ★ $\sigma_{P_T,E}$ is different between jet₁ and jet₂

•
$$M_h = 125.8 \ GeV;$$

- which σ_{M_h} ?
 - ★ M_{bb} resolution for $h \rightarrow bb$ from MC or uncertainty on M_h ?
 - ★ Try both.
- Use α_1, α_2 to redefine b-jets (b'_i) , and look at $M_{b'b'}$ and $M_{b'b' \parallel}$

^afrom AN 2010 371

- 3

イロト イポト イヨト イヨト

Force $M_{hh} = M_h$

Kinematical fit M_{bb} to M_h

 M_{bb} reco, with both jet matched to the *b*-jets from $h_{125} \rightarrow bb$ decay.

Di-jet Mass resolution

- $\sigma_{M_h} = 18 GeV$
- but the uncertainty on M_h is much smaller! $\sim 0.8 \ GeV$
- Try and see the effect to use $\sigma_{M_h} = 18/10/1 \ GeV$

To force $M_{ii} = M_h$ we would need to stretch the jet p_T by $\sim 1.25 \cdot \sigma_{p_T}$

Minimimization

Build and minimize the χ^2 as defined above with $\sigma_{M_{bb}} = 18 \text{ GeV}$

Results

 χ^2 minimized correspond to $M_{jj} = 112.6 \ GeV$ with $\chi^2 = 0.75$

- 2

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Minimimization

Build and minimize the χ^2 as defined above with $\sigma_{M_{bb}} = 10 \text{ GeV}$

Results

 χ^2 minimized correspond to $M_{jj} = 117.9$ GeV with $\chi^2 = 1.46$

- 2

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Minimimization

Build and minimize the χ^2 as defined above with $\sigma_{M_{bb}} = 1 \text{ GeV}$

Results

 χ^2 minimized correspond to $M_{jj} = 125.6~GeV$ with $\chi^2 = 2.50$

Kinematical fit M_{bb} to M_{b}

Data

ww

WJets

Tbar_t

DYJets 2E

DYJets 1B

DYJets_0B OCD

m.=250~GeV n_=300~GeV

n.=350~GeV

.=1 pb

h mass [GeV]

180

h mass [GeV]

a market to be the first of the

TTW

S.Lacaprara (INFN Padova)

140 160 180 200

Z mass cut + 1 CVST + 1 CVSL - $\sigma_{signal} = 1 p b \sim (40 x)$

Kinematical fit M_{bb} to M_h

 χ^2 distributions

Kinematical fit χ^2 distribution for data and MC, with $\sigma_{M_h} = 18 \ GeV$

NB: $\sigma_{signal} = 1pb$, enhanced by a factor \sim (40x) with respect to a typical 2HDM $\sigma_{signal} = 25 \ fb$

Kinematical fit M_{bb} to M_h

Summary

 χ^2 distributions (II) Z mass cut + 1 CVST + 1 CVSL

A cut on χ^2 (e.g. $\chi^2 < 10$) acts as an effective cut on M_{bb}

- < A

Force $M_{bb} = M_h$

Kinematical fit M_{bb} to M_{h}

Summary

 M_{bb} w/ kin fit with $\sigma_{M_{bb}} = 18 \ GeV$ $M_h = 115.97 \pm 0.11 \ GeV$ $\sigma_{M_b} = 14.50 \pm 0.12 \ GeV$

Likewise w/o kin fit $M_h = 113.47 \pm 0.16 \text{ GeV}$ $\sigma_{M_h} = 17.66 \pm 0.21 \text{ GeV}$

Z mass cut + 1 CVST + 1 CVSL ($\sigma_{signal} = 1pb$)

Kinematical fit M_{bb} to M_h

Summary

M_{bb} kinematical fit with :

 M_{bb} distribution

イロト 不得下 イヨト イヨト

Kinematical fit M_{bb} to M_h

Summary

 $M_{bb} \text{ distribution}$ Z mass cut + 1 CVST + 1 CVSL ($\sigma_{signal} = 1pb$)

M_{bb} kinematical fit with $\chi^2 < 10$ and:

イロト 不得下 イヨト イヨト

Kinematical fit M_{bb} to M_h

Summary

What is the impact on 4-body $M_{\ell\ell bb}$

- Apply the method described above and look at the 4-body $M_{\ell\ell bb}$ invariant mass distribution;
- For the three available M_A (250, 300, and 350 GeV);
- Compute the expected limit (CLs) with the kinematical fit, and compare with that using the mass constraint $M_{bb} = M_h$ as well as to the standard analysis (no mass constraint).

Force $M_{bb} = M_h$

Kinematical fit M_{bb} to M_h

Summary

AZh

Force $M_{bb} = M_h$

Kinematical fit M_{bb} to M_h

Conclusion II

	$\sigma_{M_{A}} \; GeV$						
	$\sigma_{M_{bb}} = 18~\mathrm{GeV}$	$\sigma_{M_{bb}} = 10~GeV$	$\sigma_{M_{bb}} = 1~GeV$				
250	13.38	9.90	5.69				
300	17.30	13.00	9.42				
350	19.32	15.38	12.46				

- Kinematical Fit improves the expected limits;
- The smaller $\sigma_{M_{bb}}$, the better the limit

Kinematical fit M_{bb} to M_h

Summary

Comparison of the two methods

	σ_{M_A} GeV					
MA	original	$\mathbf{M}_{\mathbf{b}\mathbf{b}} = \mathbf{M}_{\mathbf{h}}$	kin fit			
250	14.5	6.18	5.69			
300	18.9	10.50	9.42			
350	21.5	17.25	12.46			

- Forcing $M_{bb} = M_h$ gives results as good as kinematical fit with $\sigma_{M_{bb}} = 1 \ GeV$
- provided the former is applied only to those events with $90 < M_{bb} < 140 \text{ GeV}.$

Force $M_{bb} = M_h$

- Background is not peaked as much as Signal;
- If we cut on M_{bb} before forcing $M_{bb} = M_h$: expected limit is significantly better
- If not, Background is significantly higher!!

Kinematical fit

- M_A peak can be narrowed by M_h kinematical fit
- A cut on M_{bb} can be replaced by a cut in χ^2
- With small $\sigma_{M_{bb}} = 1 \text{ GeV}$, the results are similar to that of forcing the mass with a prior cut on M_{bb}

(日) (周) (三) (三)

± 10				÷		
	0		c			

Force $M_{bb} = M_h$

Kinematical fit M_{bb} to M_h

Summary

Backup

Guess what? Yep, backup slides ahead!

æ

イロト イポト イヨト イヨト

2HDM Scan

- Rui Santos kindly provided the 2HDM (type-I [left] and type-II [center]) scans for $\sigma \times \mathcal{B}$ for $A \rightarrow Zh$ modes.
- https://twiki.cern.ch/twiki/bin/view/CMS/Higgs/HiggsExotics2HDM
 - $\sigma \times \mathcal{B}(A \to Zh) \times \mathcal{B}(h \to bb) \sim \mathcal{O}(1 \ pb)$
 - ▶ $\times \mathcal{B}(Z \to \ell \ell) \approx 0.07$ not included in 2DHM plots!
 - $\sigma \times \mathcal{B}(A \to Zh \to \ell\ell bb) \sim \mathcal{O}(100 \ fb)$
- [right] expected sensitivity (from feasiblity studies) for this analysis
- We are in the correct ballpark (limits overlayed by hand!)
- It could be worth to look at wider m_A range: $m_A = 200 \div 500$

S.Lacaprara (INFN Padova)

AZh

 $M_A=300~GeV~\sigma_{signal}=25~fb$

 M_{bb} not forced

 $\sigma_{M_A} = 18.9 \pm 0.1 ~GeV$ S = 32 B = 1350

$$M_{bb} = M_h$$

 $\sigma_{M_{A}} = 12.59 \pm 0.09 \ GeV$ S = 42 B = 3880

 $M_{bb} = M_h$ if $90 < M_{bb} < 140 ~GeV$

 $M_A = 297.00 \pm 0.08 ~GeV$ $\sigma_{M_A} = 10.50 \pm 0.08 \ GeV$ S = 32 B = 1350

 $M_A=350~GeV~\sigma_{signal}=25~fb$

 M_{bb} not forced

 $\sigma_{M_A} = 21.5 \pm 0.1 \ GeV$ S = 31 B = 560

$$M_{bb} = M_h$$

 $\sigma_{M_A} = 17.25 \pm 0.13 ~GeV$ S = 39 B = 1440 $M_{bb} = M_h$ if 90 < M_{bb} < 140 GeV

 $M_A = 345.72 \pm 0.11 \ GeV$ $\sigma_{M_A} = 14.50 \pm 0.10 \ GeV$ $S = 31 \ B = 560$

イロト 不得下 イヨト イヨト

Kinematical fit M_{bb} to M_b

Summary

AN 2010 371: Jet resolution vs p_T for various $|\eta|$ bins.

Jet resolution

<ロ> (日) (日) (日) (日) (日)

Force $M_{bb} = M_b$

Kinematical fit M_{bb} to M_h

Summary

 $M_A = 250 \ GeV$

Force $M_{bb} = M_b$

Kinematical fit M_{bb} to M_h

Summary

ww

W.lets

Thar t

DYJets 28

DYJets_1B

DYJets 0B

m.=300~GeV

500

500 юu A mass (GeV)

TTW

QCD

ZH

Kin fit M_{bb} to M_{b}

M300

 $\sigma_M = 1 \text{ GeV}$

80

70

60

50

40

30 20

10

0.0

 $M_A = 301.44 \pm 0.07 ~GeV$ $\sigma_{M_A} = 9.42 \pm 0.08 ~GeV$ S = 31 ~B = 1690

 $M_A = 295.39 \pm 0.09 ~GeV$ $\sigma_{M_A} = 13.00 \pm 0.10 ~GeV$ S = 36 ~B = 2085

 $M_A = 291.24 \pm 0.13 \ GeV$ $\sigma_{M_A} = 17.30 \pm 0.12 \ GeV$ $S = 35 \quad B = 1716$

 $m_A = 352.37 \pm 0.10 \text{ GeV}$ $\sigma_{M_A} = 12.46 \pm 0.10 \text{ GeV}$ $S = 31 \quad B = 670$

 $M_A = 346.43 \pm 0.11 ~GeV$ $\sigma_{M_A} = 15.38 \pm 0.12 ~GeV$ S = 35 ~B = 834

 $M_A = 342.13 \pm 0.14 \ GeV$ $\sigma_{M_A} = 19.32 \pm 0.14 \ GeV$ S = 34B = 706

Force $M_{bb} = M_b$

Kinematical fit M_{bb} to M_h

Summary

Force $M_{bb} = M_h$

Kinematical fit M_{bb} to M_h

Summary

Kinematical fit M_{bb} to M_h

Summary

æ

・ロン ・四 ・ ・ ヨン ・ ヨン

Kinematical fit M_{bb} to M_b

Summary

æ

Image: A matrix

Kinematical fit M_{bb} to M_b

Summary

3

Image: A matrix