Status update on $A \rightarrow Zh \rightarrow \ell \ell b \bar{b}$ analysis.

Paolo Checchia, Tommaso Dorigo, **Stefano Lacaprara**, Mia Tosi, Alberto Zucchetta

INFN Padova

Hbb meeting, CERN, 23 August 2013

CERN 23/8/2013

1 / 32

Introduction

- Interesting channel in 2HDM
- Including, but not limited to, SUSY, $m_h + m_Z \lesssim m_A \lesssim 2m_{top}$, decay $A \to Zh_{125} \to \ell\ell \ell b \bar{b}$
 - ▶ also in MSSM at low tan β , not allowed in m_h^{max} benchmark scenario given $m_h = 125 \ GeV$
 - possible in other scenarios if $M_{SUSY} \gg 1 \ TeV$
- Production via gluon fusion process.
 - Also $b\bar{b}$ associated production possible (not yet considered)

signature two resonant ℓ ; $\ell = e, \mu$;

- ▶ two resonant b − tag jets;
- reconstruct $\ell\ell b\bar{b}$ invariant mass;

background mostly Z+bb, $t\bar{t}$

(日)

\bullet Moved to $\rm CMSSW_5_3_11$

- GlobalTags: Data FT_53_V21_AN5 MCSTART53_V7G
- Jet energy scale fixed was a bug in cfg for PU treatment
- MET type1 corrected for MC
- new b-tagger: CSV retrained and the "supercombined" NOT used, yet

• Moved to Data ReReco22Jan13

- Some new MC samples,
 - including $A \rightarrow Zh \rightarrow \ell \ell bb$ signals from full simulation
 - more statistics for Z + jets background
- Consolidate control regions
 - Simultaneous scale factor fit from 3/4 CRs

- Rui Santos kindly provided the 2HDM (type-I [left] and type-II [center]) scans for $\sigma \times B$ for $A \rightarrow Zh$ modes.
- https://twiki.cern.ch/twiki/bin/view/CMS/Higgs/HiggsExotics2HDM
 - $\sigma \times \mathcal{B}(A \rightarrow Zh) \times \mathcal{B}(h \rightarrow bb) \sim \mathcal{O}(1 \ pb)$
 - $\times \mathcal{B}(Z \to \ell \ell) \approx 0.07$ not included in 2DHM plots!
 - $\sigma \times \mathcal{B}(A \rightarrow Zh \rightarrow \ell\ell bb) \sim \mathcal{O}(100 \text{ fb})$

FIG. 7: The pseudoscalar scalar mass versus $\sigma(pp \rightarrow A)BR(A \rightarrow hZ)BR(h \rightarrow bb)$. Left - type I and right - type II. Cross sections in pbarn and masses in GeV. The peak at ~ 375 GeV, corresponding to the "opening" of the $t\bar{t}$ channel in the gluon-gluon production of A

< ロ > < 同 > < 回 > < 回 >

- Rui Santos kindly provided the 2HDM (type-I [left] and type-II [center]) scans for $\sigma \times B$ for $A \rightarrow Zh$ modes.
- https://twiki.cern.ch/twiki/bin/view/CMS/Higgs/HiggsExotics2HDM
 - $\sigma \times \mathcal{B}(A \rightarrow Zh) \times \mathcal{B}(h \rightarrow bb) \sim \mathcal{O}(1 \ pb)$
 - $\times \mathcal{B}(Z \to \ell \ell) \approx 0.07$ not included in 2DHM plots!
 - $\sigma \times \mathcal{B}(A \to Zh \to \ell\ell bb) \sim \mathcal{O}(100 \ fb)$
- [right] expected sensitivity (from feasiblity studies) for this analysis
- We are in the correct ballpark (limits overlayed by hand!)
- It could be worth to look at wider m_A range: $m_A = 200 \div 500$

S.Lacaprara (INFN Padova)

CMSSW_5_3_11 HLT paths: HLT_Mu17_Mu8 OR HLT_Ele17_CaloIdT_CaloIsoVL_TrkIdVL_TrkIsoVL_Ele8_CaloIdT_CaloIsoVL_TrkIdVL_TrkIso

Dataset	Triggers	$L[fb^{-1}]$
/DoubleMuParked/Run2012A-22Jan2013-v1	567 697	0.912
/DoubleMuParked/Run2012B-22Jan2013-v1	12 313 533	4.508
/DoubleMuParked/Run2012C-22Jan2013-v1	13922018	7.228
/DoubleMuParked/Run2012D-22Jan2013-v1	12636904	7.446
Total DoubleMuParked	39 440 152	20.094
/DoubleElectron/Run2012A-22Jan2013-v1	1167639	0.912
/DoubleElectron/Run2012B-22Jan2013-v1	5 905 466	4.511
/DoubleElectron/Run2012C-22Jan2013-v1	9 357 957	7.267
/DoubleElectron/Run2012D-22Jan2013-v1	6226511	7.446
DoubleElectron Total	22 657 573	20.136

MonteCarlo samples

Dataset	Events	Triggers	Trigger ϵ	σ
QCD_Pt_20_MuEnrichedPt_15_TuneZ2star_8TeV_pythia6	21 484 602	338 281	1.59%	364.10^{6}
DYJetsToLL_M-50_TuneZ2Star_8TeV-madgraph-tarball	30 459 503	8 880 856	29.16%	3,503.71
DYJetsToLL_M-10To50_TuneZ2Star_8TeV-madgraph	37 835 275	331 795	0.88%	11,050.00
DY1JetsToLL_M-50_TuneZ2Star_8TeV-madgraph	24 045 248	7 692 924	31.99%	666.30
DY2JetsToLL_M-50_TuneZ2Star_8TeV-madgraph	21 852 156	7 404 195	33.88%	214.97
DY3JetsToLL_M-50_TuneZ2Star_8TeV-madgraph	11 015 445	3 872 159	35.15%	60.69
DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph	6 402 827	2 320 782	36.25%	27.36
DYJetsToLL_PtZ-50To70_M-50_TuneZ2Star_8TeV-madgraph	21 507 862	7 670 504	35.66%	105.70
DYJetsToLL_PtZ-70To100_M-50_TuneZ2Star_8TeV-madgraph	13 177 933	5148083	39.07%	62.95
DYJetsToLL_PtZ-100_M-50_TuneZ2Star_8TeV-madgraph	15 173 463	6724067	42.87%	39.08
DYJetsToLL_PtZ-180_M-50_TuneZ2Star_8TeV-madgraph	1 555 476	807 523	51.91%	5.42
ZbbToLL_massive_M-50_TuneZ2star_8TeV-madgraph-pythia6_tauola	14 129 304	5916544	41.87%	76.75
WJetsToLNu_TuneZ2Star_8TeV-madgraph-tarball	57 709 905	85 365	0.15%	37,509.00
T_s-channel_TuneZ2star_8TeV-powheg-tauola	259 961	6 221	2.39%	3.79
T_t-channel_TuneZ2star_8TeV-powheg-tauola	99 876	1631	1.63%	56.40
T_tW-channel-DR_TuneZ2star_8TeV-powheg-tauola	497 658	34 417	6.92%	11.10
Tbar_s-channel_TuneZ2star_8TeV-powheg-tauola	139 974	3 265	2.33%	1.76
Tbar_t-channel_TuneZ2star_8TeV-powheg-tauola	1 935 072	33 047	1.71%	30.70
Tbar_tW-channel-DR_TuneZ2star_8TeV-powheg-tauola	493 460	34 328	6.96%	11.10
TTJets_FullLeptMGDecays_8TeV-madgraph-tauola	12 011 428	4 886 110	40.68%	23.64
TTWJets_8TeV-madgraph	196 046	32 975	16.82%	0.23
TTZJets_8TeV-madgraph_v2	210 160	35 763	17.02%	0.21
WW_TuneZ2star_8TeV_pythia6_tauola	10 000 431	330 481	3.30%	33.61
WZ_TuneZ2star_8TeV_pythia6_tauola	10 000 283	475 852	4.76%	12.63
ZZ_TuneZ2star_8TeV_pythia6_tauola	9 799 908	830 053	8.47%	5.20
ZH_ZToLL_HToBB_M-125_8TeV-powheg-herwigpp	999 462	455 572	45.58%	0.02
GluGluToAToZhToLLBB_mA-250_mh-125_8TeV-pythia6-tauola	300 000	147 653	49.22%	-
GluGluToAToZhToLLBB_mA-300_mh-125_8TeV-pythia6-tauola	300 000	154 646	51.55%	-
GluGluToAToZhToLLBB_mA-350_mh-125_8TeV-pythia6-tauola	299 272	159 499	53.30%	-
Total	272 697 805			

Blue=new dataset all datasets Summer12_DR53X-PU_S10_START53_V7A

- ▲ 🖓 🕨 - ▲ 🖻

Z+light jets statistics in MC usage of exclusive samples

- The events reduction for Z+light jets background is very large when b-tagging is required. Statistical problem in MC
- We can use the exclusive DYNJets with N=1,2,3,4 instead of the inclusive DYJets.
- In addition, add the DY**0**Jets from DYJets, selected at parton level from hard process.
 - The contribution is non negligible even after requiring 2 jets p_T > 20, 20 GeV.
- Use overlapping samples by adding a weight ¹/₂ to ¹/₀₀₀₀
 the events.
 - e.g. Z+1 jet from inclusive DYJets sample and from exclusive dataset DY1Jets
- We are adding also the exclusive p_T^Z -bin datasets in the same way. (not yet in this presentation)
- Z + bb is reweighted $\frac{1}{2}$ from all these samples and from the exclusive dataset ZbbToLL

All events Only with pre-selection cuts: discrepancy. (*bb* == *jj*)

Problem Z spectrum in DY* samples. Need re-weight as in VHbb analysis.

Preselection

- either HLT_Mu17_Mu8 or HLT_Ele17[...]Ele8[...] trigger fired;
- $N_{\ell} \ge 2$: $p_T > 20(10)$ GeV, \pm , same flavour, isolated ($PF_{iso}^{rel} < 0.15$);
- $M_{\ell\ell} > 50~GeV$
- $N_{jets} \geq$ 2: $p_T >$ 20 GeV, $\Delta R_{jet,\ell} >$ 0.5;

Analysis cuts

- Z selection: $80 < m_{\ell\ell} < 100 \ GeV$;
- b-tagging (CSV): jet₁ is CSVT, jet₂ CSVM;
- h selection: $90 < m_{bb} < 140 \text{ GeV}$;
- top rejection: $MET < 60 \ GeV$
- Final selection is *m_A* dependent.

< □ > < 同 > < 回 > <

After preselection dominating backgrounds are:

- 2 + bb
- 2 tt
- Z + light jets reducible asking b-jets
- other: singleTop, VV

- 4 課 入 4 注 入 4

Zbb CR cuts

- Preselection
- Z selection: 80 < m_{ℓℓ} < 100 GeV;
- B-tag: Jet₁ CSVT, Jet₂ CSVM
- h veto $m_{bb} < 90$ $m_{bb} > 140 ~GeV$
- top veto: MET < 40 GeV

・ロット (雪) () () (

• Data/Bkg= 1.030±0.017

э

TTbar CR cuts

- Preselection
- Z veto $m_{\ell\ell} < 80$ OR $m_{\ell\ell} > 100 \ GeV;$
- B-tag: Jet₁ CSVT, Jet₂ CSVM
- top selection $MET > 40 \ GeV$

• Data/Bkg= 1.032±0.012

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲ □ ♪ ◇ ◇ ◇

ZJets CR cuts

- Preselection
- Z selection: $80 < m_{\ell\ell} < 100 \text{ GeV};$
- h veto: $m_h < 80$ or $m_h > 140~GeV$
- top veto: $MET < 40 \ GeV$
- Data/Bkg= 1.006±0.002
- Some problem for $M_{\ell\ell bb} < 150 \ GeV$

・ロッ ・ 一 ・ ・ ・ ・

(日)

<ロ> (日) (日) (日) (日) (日)

Control Region simultaneous fit

- We have 3 control regions for the 3 major background sources.
- Do a simultaneous likelihood fit of the 3 CRs to get the MC scale factor.
- The normalization of the other minor backgrounds are kept fixed.

Scale fac	tors		
Control	Scale Factor		
Region	simultaneous fit	single CR ratio	
Zbb	1.035 ± 0.012	1.030 ± 0.017	
TTbar	0.989 ± 0.021	1.032 ± 0.012	
ZJets	1.007 ± 0.002	1.006 ± 0.002	

Control Region simultaneous fit

- Same but excluding *M*_{ℓℓbb} < 150 *GeV*, where ZJets has problem;
- Data/MC Agreement even better

Scale factors			
Control	Scale Factor		
Region	simultaneous fit	single CR ratio	
Zbb	1.030 ± 0.022	1.028 ± 0.017	
TTbar	1.037 ± 0.012	1.032 ± 0.012	
ZJets	0.997 ± 0.002	0.999 ± 0.001	

Zb CR cuts

- Preselection
- Z selection: $80 < m_{\ell\ell} < 100 \text{ GeV};$
- h veto: $m_h < 80$ or $m_h > 140~GeV$
- B-tag: Jet₁ CSVT
- top veto: $MET < 40 \ GeV$
- Data/Bkg= 0.913±0.006

Same as Zbb but just 1 b-tag. No SF applied (yet) Statistical correlation with Zbb sample!

Will try anti b-tag on jet₂.

Try to use the Zjets scale factor for Z1b

Not really great ...

S.Lacaprara	(INFN Padova)
-------------	---------------

(日)

$\overset{\frown}{}$ What if we use 4 CR (Zbb, TTbar, ZJets and Z1b) $\overset{\frown}{C}$

INFN

- Use 4 control regions for the 4 major background sources.
- Zbb CR is significantly worse
- Similar results excluding *M*_{ℓℓbb} < 150 *GeV* (in backup)
- Correlation between Zbb and Zb plays a significant role!

Scale fac	tors		
Control	Scale Factor		
Region	simultaneous fit	single CR ratio	
Zbb	0.842 ± 0.011	1.030 ± 0.017	
TTbar	1.044 ± 0.021	1.052 ± 0.012	
ZJets	1.014 ± 0.001	1.032 ± 0.002	
Z1b	0.913 ± 0.006	0.913 ± 0.002	

(日)

Use scale factors from 3 (or 4 CR) fit to get systematics uncertainties on background normalization

Summary

- Data and MC processing up-to-date
 - Need to re-weight p_T^Z spectrum
 - DYJets statistics improved with exclusive samples.
 - Add also exclusive DY with p_T^Z bin
 - More mass points for m_A
 - Is PYTHIA enough for signal kinematics?
- Control region consolidated
 - Work on correlation between CR
 - $\star\,$ try anti b-tag on Zjets and/or Z1b
 - ▶ Still some problem with Z+1b
- Finalize cut and counts analysis
 - already in good shape, no time to show it today: maybe next meeting.
- Start with MVA approach

S.Lacaprara	(INFN	Padova)
-------------	-------	---------

< □ > < 同 > < 三 >

Backup

Guess what? Yes! Backup slides.

э

・ロト ・回 ト ・ ヨト ・ ヨ

э

・ロト ・回 ・ ・ ヨト ・

Zbb CR

INFN

- With the last PAT productions (based on 52X) we had a problem in the Jet energy scale.
 - ► $< m_{125}^{h \to bb} >= 103 \text{ GeV}, < m_{Z \to jj} >= 78 \text{ GeV}$
- Problem tracked down to incorrect PU treatment
 - many thanks to Michele for his suggestion!
- $\bullet\,$ Furthermore, there is a very clear correlation between the reconstructed invariant mass and the pt of the H/W/Z the jets come from
- given our cuts, the heavy object is less boosted than the analogous in the standard VH analysis, so care must be taken in comparing the results.
- Following slides: jets used comes from H/W/Z (MC truth)

▲□▶ ▲□▶ ▲ □▶ ▲

 $\sum Z \rightarrow jj$ mass distribution

▲□▶ ▲□▶ ▲ □▶ ▲

・ロト ・回 ・ ・ ヨト ・

4 CR (Zbb, TTbar, ZJets and Z1b) and $M_{\ell\ell bb} > \mathcal{V}$ 150 GeV

- likewise excluding $M_{\ell\ell bb} < 150 \ GeV$
- Zbb CR is significantly worse

Scale fac	tors		
Control	Scale Factor		
Region	simultaneous fit	single CR ratio	
Zbb	0.855 ± 0.019	1.028 ± 0.017	
TTbar	1.047 ± 0.012	1.032 ± 0.012	
ZJets	0.994 ± 0.001	0.999 ± 0.001	
Z1b	0.913 ± 0.006	0.911 ± 0.006	

