Intro	What's new	Analysis	Control Regions	Final selection	Summary and TODO
	000000000000000000000000000000000000000)	0000000000	000000000000000000000000000000000000000	00000000000

Status update on $A \rightarrow Zh \rightarrow \ell \ell b \bar{b}$ analysis.

Davide Ceoldo, Paolo Checchia, Tommaso Dorigo, **Stefano** Lacaprara, Mia Tosi, Alberto Zucchetta

INFN Padova

Hbb meeting, CERN, 19 July 2013

□ ▶ ▲ □ ▶ ▲ □

Intro	What's new 000000000000000000000000000000000000	Analysis	Control Regions	Final selection	Summary and TODO
Market Int	roduction				INFN

Introduction

- Interesting channel in 2HDM
- Neutral SUSY pseudoscalar higgs A, $m_h + m_Z \lesssim m_A \lesssim 2m_{top}$, decay $A \to Z h_{125} \to \ell \ell \ell b \bar{b}$
 - ▶ also in MSSM at low tan β , not allowed in m_h^{max} benchamrk scenario given $m_h = 125 \ GeV$
 - possible in other scenarios if $M_{SUSY} \gg 1 \ TeV$
- Production via gluon fusion process.
 - Also $b\bar{b}$ associated production possible (not yet considered)

signature two resonant ℓ ;

- ▶ two resonant b tag jets;
- reconstruct $\ell\ell b\bar{b}$ invariant mass;

```
background mostly Z+bb, t\bar{t}
```


- \bullet Moved to $\rm CMSSW_5_3_11$
 - Jet energy scale fixed
 - new b-tagger: CSV retrained and the "supercombined"
- Moved to Data ReReco22Jan13
- Some new MC samples,
 - including $A \rightarrow Zh \rightarrow \ell \ell bb$ signals from full simulation
 - more statistics for Z + jets background
- Consolidated control regions
 - Simultaneous scale factor fit from 3 CR
- Preliminary cuts optimization.

イロト イ押ト イヨト イヨト

- Rui Santos kindly provided the 2HDM (type-I [left] and type-II [center]) scans for $\sigma \times B$ for $A \rightarrow Zh$ modes.
- https://twiki.cern.ch/twiki/bin/view/CMS/Higgs/HiggsExotics2HDM
 - $\sigma imes \mathcal{B}(A o Zh) \sim \mathcal{O}(1 \div 10 pb)$
 - $\times \mathcal{B}(Zh \rightarrow \ell\ell bb) \approx 0.07$
 - $\sigma \times \mathcal{B}(A \to Zh \to \ell\ell bb) \sim \mathcal{O}(10 \div 100 fb)$
- We are in the correct ballpark [right] expected sensitivity for this analysis

CERN 19/07/2013 4 / 58

tro What's new Analysis

Control Regions

Final selection Summary and TODO

CMSSW_5_3_11

HLT paths: HLT_Mu17_Mu8

Data ReReco 22Jan

OR

 $HLT_Ele17_CaloldT_CalolsoVL_TrkIdVL_TrkIsoVL_Ele8_CaloldT_CalolsoVL_TrkIdVL_TrkIsoVL_Ele8_CaloldT_CalolsoVL_TrkIdVL_TrkIsoVL_Ele8_CaloldT_CalolsoVL_TrkIdVL_TrkIsoVL_Ele8_CaloldT_CalolsoVL_TrkIdVL_TrkIsoVL_Ele8_CaloldT_CalolsoVL_TrkIdVL_TrkIsoVL_Ele8_CaloldT_CalolsoVL_TrkIdVL_TrkIsoVL_Ele8_CaloldT_CalolsoVL_TrkIdVL_TrkIsoVL_Ele8_CaloldT_CalolsoVL_TrkIdVL_TrkIsoVL_Ele8_CaloldT_CalolsoVL_TrkIdVL_TrkIsoVL_Ele8_CaloldT_CalolsoVL_TrkIdVL_TrkIsoVL_Ele8_CaloldT_CalolsoVL_TrkIdVL_TrkIsoVL_Ele8_CaloldT_CalolsoVL_TrkIdVL_TrkIsoVL_Ele8_CaloldT_CalolsoVL_TrkIdVL_TrkIsoVL_Ele8_CaloldT_CalolsoVL_TrkIdVL_TrkIsoVL_Ele8_CaloldT_CalolsoVL_TrkIdVL_TrkIsoVL_Ele8_CaloldT_CalolsoVL_TrkIdVL_TrkIsoVL_Ele8_Calod T_CalolsoVL_TrkIdVL_TrkIsoVL_Ele8_Calod T_CalolsoVL_TrkIdVL_TrkIsoVL_Ele8_Calod T_CalolsoVL_TrkIdVL_TrkIsoVL_Ele8_Calod T_CalolsoVL_TrkIdVL_TrkIsoVL_Ele8_Calod T_CalolsoVL_TrkIdVL_TrkIsoVL_Ele8_Calod T_CalolsoVL_TrkIdVL_TrkIsoVL_Ele8_Calod T_Calod T_Calod T_CALSOVL_TrkIdVL_TrkIsoVL_Ele8_Calod T_CALSOVL_TrkIdVL_TrkIsoVL_TrkIsoVL_TrkIsoVL_Ele8_Calod T_CALSOVL_TrkIdVL_TrkIsoVTrkIsoVL_TrkIsoVTT$

Dataset	Triggers	$L[fb^{-1}]$
/DoubleMuParked/Run2012A-22Jan2013-v1	567 697	0.912
/DoubleMuParked/Run2012B-22Jan2013-v1	12313533	4.508
/DoubleMuParked/Run2012C-22Jan2013-v1	13922018	7.228
/DoubleMuParked/Run2012D-22Jan2013-v1	12636904	7.446
Total DoubleMuParked	39 440 152	20.094
/DoubleElectron/Run2012A-22Jan2013-v1	1167639	0.912
/DoubleElectron/Run2012B-22Jan2013-v1	5 905 466	4.511
/DoubleElectron/Run2012C-22Jan2013-v1	9 357 957	7.267
/DoubleElectron/Run2012D-22Jan2013-v1	6226511	7.446
DoubleElectron Total	22 657 573	20.136

3

(日) (同) (三) (三)

	÷	-	~
	ι		U

What's new Analysis

Control Regions

Final selection Summary and TODO

INFN

CN	15
	Ďa

MonteCarlo samples

Dataset	Events	Triggers	Trigger ϵ	σ
QCD_Pt_20_MuEnrichedPt_15_TuneZ2star_8TeV_pythia6	21 484 602	338,281	1.59%	364·10 ⁶
DYJetsToLL_M-50_TuneZ2Star_8TeV-madgraph-tarball	30 459 503	8,880,856	29.16%	3,503.71
DYJetsToLL_M-10To50_TuneZ2Star_8TeV-madgraph	37 835 275	331,795	0.88%	11,050.00
DY1JetsToLL_M-50_TuneZ2Star_8TeV-madgraph	24 045 248	7,692,924	31.99%	666.30
DY2JetsToLL_M-50_TuneZ2Star_8TeV-madgraph	21 852 156	7,404,195	33.88%	214.97
DY3JetsToLL_M-50_TuneZ2Star_8TeV-madgraph	11 015 445	3,872,159	35.15%	60.69
DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph	6 402 827	2,320,782	36.25%	27.36
ZbbToLL_massive_M-50_TuneZ2star_8TeV-madgraph-pythia6_tauola	14 129 304	5,916,544	41.87%	76.75
WJetsToLNu_TuneZ2Star_8TeV-madgraph-tarball	57 709 905	85,365	0.15%	37,509.00
T_s-channel_TuneZ2star_8TeV-powheg-tauola	259 961	6,221	2.39%	3.79
T_t-channel_TuneZ2star_8TeV-powheg-tauola	99 876	1,631	1.63%	56.40
T_tW-channel-DR_TuneZ2star_8TeV-powheg-tauola	497 658	34,417	6.92%	11.10
Tbar_s-channel_TuneZ2star_8TeV-powheg-tauola	139 974	3,265	2.33%	1.76
Tbar_t-channel_TuneZ2star_8TeV-powheg-tauola	1 935 072	33,047	1.71%	30.70
Tbar_tW-channel-DR_TuneZ2star_8TeV-powheg-tauola	493 460	34,328	6.96%	11.10
TTJets_FullLeptMGDecays_8TeV-madgraph-tauola	12 011 428	4,886,110	40.68%	23.64
TTWJets_8TeV-madgraph	196 046	32975	16.82%	0.23
TTZJets_8TeV-madgraph_v2	210 160	35763	17.02%	0.21
WW_TuneZ2star_8TeV_pythia6_tauola	10 000 431	330,481	3.30%	33.61
WZ_TuneZ2star_8TeV_pythia6_tauola	10 000 283	475,852	4.76%	12.63
ZZ_TuneZ2star_8TeV_pythia6_tauola	9 799 908	830,053	8.47%	5.20
ZH_ZToLL_HToBB_M-125_8TeV-powheg-herwigpp	999 462	455,572	45.58%	0.02
GluGluToAToZhToLLBB_mA-250_mh-125_8TeV-pythia6-tauola	300 000	147653	49.22%	-
GluGluToAToZhToLLBB_mA-300_mh-125_8TeV-pythia6-tauola	300 000	154646	51.55%	-
GluGluToAToZhToLLBB_mA-350_mh-125_8TeV-pythia6-tauola	299 272	159499	53.30%	-
Total	272 697 805			

Blue=new dataset

all datasets Summer12_DR53X-PU_S10_START53_V7A

Intro What's new Analysis Control Regions Summary and TODO Final selection PileUp reweight

S.Lacaprara (INFN Padova)

イロト イ団ト イヨト イヨト

INFN (

- $\bullet\,$ With the last PAT productions (based on 52X) we had a problem in the Jet energy scale.
 - \blacktriangleright < $m_{125}^{h \rightarrow bb}$ >= 103 GeV, < $m_{Z \rightarrow jj}$ >= 78 GeV
- Problem tracked down to incorrect PU treatment
 - many thanks to Michele for his suggestion!
- $\bullet\,$ Furthermore, there is a very clear correlation between the reconstructed invariant mass and the pt of the H/W/Z the jets come from
- given our cuts, the heavy object is less boosted than the analogous in the standard VH analysis, so care must be taken in comparing the results.
- \bullet Following slides: jets used comes from H/W/Z (MC truth)

イロト イポト イヨト イヨト

Final selection

S.Lacaprara (INFN Padova)

What's new

Intro

What's new Analy

Control Regions

Final selection Summary and TODO

Z+light jets statistics in MC DYJets vs $\Sigma_{N=1}^{4}$ DYNJets

- The events reduction for Z+light jets background is very large, especially when b-tagging is required. There is a statistical problem in the MC.
- We can use the exclusive DYNJets with N=1,2,3,4 instead of the inclusive DYJets.
- Question: do the two samples behave equally for our phase space? DY0Jets is missing;
- Look at N_{jets} (normalized) distribution all events (top) and 2 b-tag (bottom);
- The $N_{jets} = 2$ is 30% under-populate in $\Sigma^4_{N=1}$ DYNJets
- Should we add the DYOJets from DYJets? How?

Problem at low p_T for both ℓ , especially for ℓ_1

Clearly events at low p_T^Z are missing in the $\sum_{N=1}^4 \text{DY} \mathbf{N}$ Jets sample.

8000

6000

4000

2000

0.5

= 754.2/48 K-S = 0.000

40

60 80

Z+3jets

Z+4jets

MC Stat

12 14

Number of Jets

6

= 24.2/13. K-S = 0.12

CERN 19/07/2013 16 / 58

140

100

Z+2jets

Z+3jets

Z+4jets

MC Stat

¹⁶⁰ Z p₊ [GeV

S.Lacaprara (INFN Padova)

10³

10²

10

10

10-2

1.5 0.5

Bottomline is:

- we cannot just use $\Sigma_{N=1}^4$ DY**N** Jets in place of DYJets!
- with higher jet threshold agrrement is better;
- We have to find a way to get DY**0**Jets from DYJets
- add to $\sum_{N=1}^{4} DYN$ Jets so to have $\sum_{N=0}^{4} DYN$ Jets

イロト 不得下 イヨト イヨト

Preselection

- either HLT_Mu17_Mu8 or HLT_Ele17[...]Ele8[...] trigger fired;
- $N_{\ell} \geq 2$: $p_T > 20(10)$ GeV, \pm , same flavour, isolated ($PF_{iso}^{rel} < 0.15$);
- $N_{jets} \geq 2$: $p_T > 20$ GeV, $\Delta R_{jet,\ell} > 0.5$;

Analysis cuts

- Z Selection: $80 < m_{\ell\ell} < 100 \ GeV$;
- b-tagging (CSV): jet₁ is CSVT, jet₂ CSVM;
- h selection: $90 < m_{bb} < 140 \text{ GeV}$;
- top: *MET* < 60 *GeV*
- Final selection is *m_A* dependent.

3

(日) (周) (三) (三)

Analysis What's new

Control Regions

Final selection Summary and TODO

After preselection dominating backgrounds are:

 $\bigcirc Z + bb$

< 17 ▶

- tī 2
- \bigcirc Z + light jets reducible asking b-jets
- other: singleTop, VV

.∃ →

What's new Analysis

Control Regions

Final selection Summary and TODO

Zbb CR cuts

- Preselection
- Z selection:
 - $80 < m_{\ell\ell} < 100$ GeV;
- B-tag: Jet₁ CSVT, Jet₂ CSVM
- top veto: MET < 40 GeV

(日) (同) (日) (日)

• Data/Bkg= 1.076±0.017

What's new Analysis

Control Regions

Final selection Summary and TODO

Zbb control region

・ロト ・ 日 ト ・ 日 ト ・ 日

ro What's new Analysis

Control Regions

Final selection Summary and TODO

TTbar control region

TTbar CR cuts

- Preselection
- Z veto $m_{\ell\ell} < 80$ OR $m_{\ell\ell} > 100~GeV;$
- B-tag: Jet₁ CSVT, Jet₂ CSVM

- top selection $MET > 40 \ GeV$
- Data/Bkg= 1.052 ± 0.012

o What's new Analysis

Control Regions

Final selection Summary and TODO

TTbar control region

ZJets CR cuts

- Preselection
- 7 selection: $80 < m_{\ell\ell} < 100 \ GeV;$
- h veto: $m_h < 80$ or $m_{h} > 140 \, GeV$

< 🗗 🕨 - **∢ ∃** ► - - I

- top veto: $MET < 40 \ GeV$
- Data/Bkg= 1.032±0.002

INFN

< ロ > < 同 > < 三 > < 三

CERN 19/07/2013 26 / 58

Final selection Summary and TODO

MEt type-I and type-II corrections test

- Small PAT production with type-I and type-II MET correction
- Data: DoubleMu and DoubleEle dataset, RunA
- MC: DYJets
- Type-I corrected MET shows good agreement data-MC (type-II does not!)

CERN 19/07/2013 28 / 58

Intro	What's new 0000000000000000	Analysis	Control Regions ○○○○○○○○●○	Final selection
CMS				

Summary and TODO

ZJets control region

S.Lacaprara (INFN Padova)

Hbb

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

What's new Ana

Control Regions

Final selection Summary and TODO

🔀 Control Region simultaneous fit

- We have three control region for the three major background source.
- Do a simultaneous likelihood of MC on Data in order to get the CM scale factor.
- The normalization of the other minor backgrounds are kept fixed.

S.Lacaprara (INFN Padova)

Hbb

CERN 19/07/2013 30 / 58

Intro What's new Analysis Control Regions Final selection Summary and TODO

Variable considered

- $p_T^Z Z = \ell \ell$
- $\Delta(R,\eta,\phi)^Z$ between the ℓ from $Z \to \ell \ell$
- α^Z angle between the ℓ from $Z \to \ell \ell$
- $p_T^{Balance}(Z) = \frac{p_T^{\ell_1} p_T^{\ell_2}}{p_T^{\ell_1} + p_T^{\ell_2}}$
- Centrality_Z = $\frac{p_T^{\ell_1} + p_T^{\ell_2}}{p^{\ell_1} + p^{\ell_2}}$
- likewise for h = bb
- likewise for A = Zh ($\Delta R, \eta, \phi^A, \alpha^A$ between $Z = \ell \ell$ and h = bb)
- MET an its significance
- HT, ST, Centrality, Aplanarity, EventShape C/D

Θ...

- (三)王

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

IntroWhat's new
OccossAnalysisControl Regions
OccossFinal selection
OccossSummary and TODO
Occossvariable distributions:signal
discriminating variables $M_A = 250 \ GeV$ Info

3

イロト イヨト イヨト イヨト

What's new Analysis

Control Regions

Final selection Summary and TODO

Correlation Matrix (background)

Linear correlation coefficient

Correlation Matrix (signal)

S.Lacaprara (INFN Padova)

< 🗇 🕨

S.Lacaprara (INFN Padova)

Hbb

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

What's new

Control Regions

Summary and TODO Final selection

Correlation Matrix (background)

Linear correlation coefficient

Correlation Matrix (signal)

< 🗇 🕨

-

Analysis Control Regions Final selection Summary and TODO What's new variable distributions: signal $M_A = 350 \ GeV$

showing only most discriminating variables

Hbb

3

イロト イヨト イヨト イヨト

INFN

What's new

Control Regions

Summary and TODO Final selection

Correlation Matrix (background)

Linear correlation coefficient

80

60

40

20

-20

-40

-60

-80

-100

Correlation Matrix (signal)

< 🗇 🕨

イロト イヨト イヨト イヨト

CERN 19/07/2013 45 / 58

What's new Analysis

Control Regions

Final selection Summary and TODO

INFN

All variable distributions: signal vs background (I)

S.Lacaprara (INFN Padova)

Hbb

- 4 回 2 - 4 □ 2 - 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □

What's new Analysis

Control Regions

All variable distributions: signal vs background (II)

S.Lacaprara (INFN Padova)

Hbb

イロト イヨト イヨト イヨト

Hbb

- 4 回 2 - 4 □ 2 - 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □

Aplanarity

(日) (同) (三) (三)

Summary and TODO What's new **Control Regions** Final selection Final selection

$M_A = 300 \ GeV$

- $p_T^Z > 80 \ GeV$
- $\Lambda R^Z > 1$
- $p_T^h > 20 \ GeV$
- $1.5 < \Delta R^h < 3.5$
- $\Delta \eta^h < 2.0$

$M_A = 350 \ GeV$

- $p_T^Z > 100 \ GeV$
- $p_T^h > 60 \ GeV$
- $1 < \Lambda R^h < 2.75$
- $\Delta \eta^h < 2.0$

- ΔR^h is the ΔR between the jets from $h \rightarrow bb$.
- likewise for $\Delta \eta^h$ and for Z

(日) (周) (三) (三)

- 3

tro What's new Analysis

Control Regions

Final selection Summary and TODO

Summary and TODO

Summary

- being there
 - done this
 - and that
- Something important

TODO

- Use DYNJets correctly
- blah
- blah

3

イロト イヨト イヨト イヨト