Alessandro Strumia, talk at Planck 2008

about the univocal predictions of Minimal Dark Matter: DM is an automatically
stable weak 5plet with M = 9.6 TeV that gives a detectable cosmic ray positron
excess thanks to Sommerfeld-enhanced annihilations into WTW—...:

page 35 of http://www.ifae.es/planck2008/21-05_beta/Strumia.pdf

Later seen by PAMELA, excluded by ATIC, which is now excluded by FERMLI...



Implications of the
positron/electron excesses
on Dark Matter properties

1) The data

2) DM annihilations?
3) v and v constraints
4) DM decays?

Alessandro Strumia, talk at Planck 2009
From arXiv:0809.2409, 0811.3744, 0811.4153, 0905.0480 with
M. Cirelli, G. Bertone, M. Kadastik, P. Meade, M. Papucci, M. Raidal, M. Taoso
E. Nardi, F. Sannino, T. Volansky, www.cern.ch/astrumia/PAMELA . .pdf
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T he galactic DM density profile

DM velocity: [~ 10=3. DM is spherically distributed with uncertain profile:

_[re]” [1 A+ (o]
p(’l“) — PO [7] 1+ (7“/7"5)04 ]

ro = 8.5 kpc is our distance from the Galactic Center, po = p(ro) ~ 0.3 GeV /cm?3,

DM halo model a [ v rsin Kkpc
Isothermal ‘isoT" |2 2 O 5
Navarro, Frenk, White ‘NFW’' |1 3 1 20

p(r) is uncertain because DM is like capitalism according to Marx:
a gravitational system (slowly) collapses to the ground state p(r) = 6(r).
Maybe our galaxy is communist: p(r) =~ low constant, as in isoT.
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DM DM signal boosted by sub-halos?

N-body simulations suggest that DM might clump in subhalos:

Annihilation rate « [dV p? increased by a boost factor B =1 « 100 ~ a few

Simulations neglect normal matter, that locally is comparable to DM.



Propagation of e~ in the galaxy

® 4+ =wv_4f/4m where f =dN/dV dE obeys: —K(FE) V2 — 6%(Ef) = Q.

1 2 dN
Injection: Q = — (£> (o) ¥ from DM annihilations.
2\ M dE

Diffusion coefficient: K(E) = Kg(E/ GeV)? ~ R armor = E/eB.

Energy loss from IC + syn: E = E? . (407/3m2)(uy + up).

Boundary: f vanishes on a cylinder with radius R = 20kpc and height 2L.
Propagation model ) Kp in kpc2/l\/|yr L in kpc Vconv in km/s

min 0.85 0.0016 1 13.5

med 0.70 0.0112 4 12

max 0.46 0.0765 15 5
min med max

Result: eT reach us from the Galactic Center only in the max case



The data



ABC of charged cosmic rays

ei, pi, He, B, C... Their directions are randomized by galactic magnetic fields
B ~ uG. The info is in their energy spectra.

We hope to see DM annihilation products as excesses in the rarer et and p.

Experimentalists need to bring above the atmosphere (with balloons or satel-
lites) a spectrometer and/or calorimeter, able of rejecting e~ and p.

This is difficult above 100 GeV, also because CR fluxes decrease as ~ E—3,

Energy spectra below a few GeV are ~useless, because affected by solar activity.



p flux in 1/mPsec sr GeV

p/p: PAMELA
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eT/(eT +e7): PAMELA
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PAMELA 09

PAMELA is a spectrometer -+
calorimeter sent to space. It
can discriminate eT,e ,p,p,...
and measure their energies up
to (now) 100 GeV. Astrophys-
ical backgrounds should give a
positron fraction that decreases
with energy. This happens below 3%
10 GeV, where the flux is reduced

by the present solar polarity.

Growing excess above 10 GeV
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The PAMELA excess suggest that it might manifest in other experiments:
if et /e~ continues to grow, it reaches e™ ~ e~ around 1 TeV...



eT 4+ e : FERMI and HESS

These experiments cannot discriminate e+/e_, but probe higher energy.
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Hardening at 100 GeV + softening at 1 TeV

Are these real features? Likely vyes.

~l

E3(e”+e")GeV2/cmPsec

Systematic errors, not yet defined, are here (conservatively?) incoherently
added bin-to-bin to the smaller statistical error. allowina for a power-law fit.



(ATIC)

In arXiv:0809.2409 we proposed that
the large et excess could be seen also
in et 4+¢e~ and found the ATIC anomaly
on web sites of past minor conferences.
ATIC was later published on Nature,
and the topic attracted attention.
FERMI now finds that ATIC is wrong.
The FERMI paper was accepted in 3
days by PRL: a unpaid referee cannot
validate an expensive experiment.

Why do pay (attention to) journals?
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... Just a pulsar?

A pulsar is a neutron star with a rotating intense magnetic field. The resulting
electric field ionizes and accelerates e~ (and maybe iron) — v — eTe™, that are
presumably further accelerated by the pulsar wind nebula (Fermi mechanism).

o Epyisar = [w?/2, Epyisar = — B2, aceR2w?/6¢> = magnetic dipole radiation.

e The guess is &, ~ ®_; o e-e F/M/EP where p~ 2 and M are constants.

Known nearby pulsars (B0656+14, Geminga, 7) would need an unplausibly (?)
large fraction ¢ of energy that goes into e*: ¢ ~ 0.3.

Tests: o v (but beamed? still alive?); e angular anisotropies (but local B?);
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Model-independent theory of DM indirect detection



Model-independent DM annihilations

Indirect signals depend on . hon-relativistic ov, primary BR:

wWtw-—, ZZ, 6 Zh, hh Gauge/higgs sector
DM DM — ej'e_, ptu=, - Leptons
bb, tt, qq quarks, ¢ = {u,d, s, c}

No + because DM is neutral. Direct detection bounds suggest no Z.

The energy spectra of the stable final-state particles

4+ _
e, p:‘:a (V)G,M,Ta Y

depend on the polarization of primaries.

The higher-order ~ spectrum is model-dependent:

~ = (Brehmstalung/fragmentation) + (one-loop) + (3-body)



The DM spin

Non-relativistic s-wave DM annihilations can be computed in a model-independent
way because they are like decays of the two-body ¥ = DM DM state.

If DM is a fundamental weakly-interacting particle, its spin can be 0, 1/2 or 1,
so the spin of 4 can only be 0, 1 or 2

1®1=1, 2®2 = lasymm D 3symm, 3®3 = 1symm @ 3asymm D Ssymm
So:

e & can have spin 0 for any DM spin. It couples to vectors .@Fﬁy and to
higgs 2h2, not to light fermions: 2¢;4p is my/M suppressed.

e ¥ can have spin 1 only if DM is a Dirac fermion or a vector.
PAMELA motivates a large (DM DM — £7¢7): only possible for 2,,[0v,1).



DM annihilations into fermions f

e ¥ can only couple as

Yfrfr+h.c.= @\Tff\lff 20—

with W, = (fr, fr) in Dirac notation.
It means zero helicity on average, and
is typically suppressed by mf/M.

e 9, can couple as

15~

Z
«@u[fLWMfL] — «@u[wf’YuPL\U] § 10+
or =
DulfrYufR] = DulV v PRrV] 05 -
i.e. fermions with Left or Right helicity. 7
Decays like T — DueTre give e with |
0-07“‘\“‘\“‘\“‘\“‘\
dN/dzx|;, = 2(1 — 2)2(1 + 22) 00 02 04 06 08 10

Positron energy fraction x

dN/dz|p = 4(1 — 23)/3



DM annihilations into W, Z

e [ he effective interactions

@Flu,yeluypo‘Fpg aﬂd @F/%V 147

give vectors with T'ranverse polarization 1,0
(with different unobservable helicity corre-
lations), that decay in ff with E =a M as: 9

dN/dcos = 3(1 + cos?0)/8 %0-8
> |
dN/d:IZ — 3(1 _2x + 351:2)/27 © 0.6} Transverse vector
04/
° .@AEL gives Longitudinal vectors (accon- -
ting for DM annihilations into Higgs Gold- ; Longitudind vecto
stones), that decay as 0oL

0.0 0.2 04 0.6 0.8 1.0

dN/dcosf = 3(1 — cos? ) /4

Fermion energy fraction x

dN/dxr = 6x(1 — x).



DM annihilations into the higgs h

We can again focus on 2, so that the effective interaction Zh? gives DM
annihilations into hH Since they have no spin, there are no polarization issues.

We assume m;, = 115 GeV, so h decays mostly into bb.

DM annihilations into Zh will not be considered, as they are are essentially
given by the average of the Z;Z; and hh channels.



Final state spectra for M =1 TeV

We consider the allowed s-wave primary annihilation channels:

Positron fraction

{G,NL,/,LR,TL,TR, WL7WT72L72T7h7 C]7b7t}7
computed with our Mathematica MonteCarlo + Phytia8 4+ (Tauola+Phytia6)

Anti—proton fraction

Energy in GeV Energy in GeV

diogN, /dlogE
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Annihilations into leptons give qualitatively different energy spectra.
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Implications of the data



Fitting procedure

PAMELA and FERMI systematic uncertainties?

multiply each expected eT, e~, pT/p~ backdgrounds times A,EPi with free
A; and p; = 0 £ 0.05, and marginalize over A;, p;.

solar modulation as uncorrelated uncertainty below 20 GeV:
+6% at 10 GeV, £30% at 1 GeV.

DM halo: marginalize over isoT /NFW /Moore with flat prior.

Propagation: marginalize over MIN/MED/MAX with flat prior.
(MED is favored?).

Statistical techniques: as reviewed in appendix B of hep-ph/0606054.



Fitting PAMELA positron data
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If M > TeV everything fits. At smaller M only annihilations into leptons or W.



The ov nheeded for PAMELA
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ov larger than what suggested by cosmology by a factor B.



The cosmological ov

Thermal DM reproduces the cosmological DM abundance Qpph? &~ 0.11 for

ov A~ 3 x 10720 cm3/sec around freeze-out, i.e. v ~ 0.2.

up to co-annihilations and resonances. Possible extrapolations to v ~ 10 3;

10—23 ? T T T T T T T T T T T T T T 17 % 103%\ ‘\ T \\‘\H‘H ‘\ T \\HH‘\ T T T TTTTTT T
102 T 13 2 3 5 10 3;‘0 100 1000
; "g' ; 102 & E
25 | i c =
§ 10 g %; § B i
o [ = =] > L _
T~ = 2
§ 10—26§ -~ @? s 1o: -
— - > —_ Il C ]
E C 3 D 3 B ]
1077 & o) 9 = : B 1
B o g 3

B 3 <3 1k 5
-28 | put o B ]
107°° £ = ® = B ]

E > > -
- ) [ L \ i
10729 L S B S — — 0Nk T
0.0003 0.001 0.003 0.01 0.03 0.1 0.3 10-1 1 10 102 103

DM velocity v /v

The Sommerfeld effect is the quantum analogous of this classical effect: the
sun attracts slower bodies, enhancing its cross section: o = mR2(1+v3scape/v?)

If DM is thermal PAMELA needs s-wave + Sommerfeld and/or a boost factor
(DM in sub-halos has small velocity dispersion: Sommerfeld boosts the boost)



Non thermal DM

E.g. a wino that with M = 100 GeV annihilates into W;Wf with the correct
_ 93(1 = M§,/M?)3/2
VT 2nM2(2 — M2, /M2)2
T (2 — W/ )
But it contradicts PAMELA p data (unless B, < Be or low L or etc...):

DM with M = 150 GeV that annihilatesinto W"W~
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Fitting PAMELA eT anti p data

Assuming equal boost & propagation for et and p (otherwise everything goes):
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DM must annihilate into leptons or into W, Z with M > 10 TeV

Indeed a W at rest gives p with Ep > mp. SO a W with energy E = M gives
E, > Mmy/My,, above the PAMELA threshold for M > 10 TeV.



Fitting PAMELA ¢ and FERMI et + ¢~

DM annihilation
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Compatible if DM has TeV mass and annihilates into some leptons.

FERMI excludes that PAMELA is due to a DM lighter than about 1 TeV.



Positron fraction

Dark Matter identified?

DM with M = 3. TeV that annihilatesinto 77+~ with ov = 1.9x 1072 cm®/s
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(The CDF p anomaly motivates a hidden-sector that decays into 7777)



Positron fraction
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New Dark Matter models

DM with M = 3. TeV that annihilatesinto 4 with ov = 8.4x 10°% cm®/s
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PAMELA vs SUSY & co

Fit PAMELA with a neutralino at M ~ 100 GeV that annihilates into eTe v
thanks to a fine-tuned slepton mass, invoking a huuge boost Be ~ 106;

Unnatural SUSY at many TeV with ov enhanced by Sommerfeld;

SUSY -+ ad hoc stable new particles. E.g. a vr lighter than My, and with
a large Yukawa vrLH annihilates into L;

DM vectors or fermions suggested by wUED (would be Universal Extra Di-
mensions) or by LHT (Little Higgs with non-anomalous T-parity) annihilate
~ 30% into leptons, but ~ 70% into ¢q, W.



DM models for PAMELA and FERMI

DM is charged under a dark gauge group, to get the Sommerfeld enhancement.

For PAMELA. [Cirelli, Kadastik, Raidal, Strumia] proposed that DM as a Dirac
fermion with M ~ 2 TeV and charge g ~ 2 under L, — L+ (suggested by 653 =
w/4), gauged with ay =~ 1/50 (giving the correct thermal abundance) and mass
My, =~ My, giving the g, — 2 anomaly + Sommerfeld.

At 1 loop L, — Lr mixes with the photon: 6 ~ egy In(ms/m,)/67° ~ 0.005.
Direct cross section: oy = 4mg?ayam?,02 /M ~ 10~42 cm?

For PAMELA, ATIC (x), DAMA (?), INTEGRAL (x?) and EGRET (x7?).
[Arkani-Hamed, Weiner et al.] proposed that the new vector is light My, <my
and couples to SM particles only via a mixing with the photon,

0 ~ egy IN(Mp)/M>) /672 ~ 107273

so that: e V automatically decays into light leptons e,,u,ﬂi; e VV gives a small
Say ~ af?(my/My )2/t ~ 1072; V gives a 10™° too large elastic og;. If the
DM gauge group is non abelian, DM has multiple components with 100
keV (rZJ ay My) mass splittings, one can instead get an inelastic o4;, that can
explain DAMA (but M = 1 TeV is too heavy?)
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Bounds from ~, v indirect detection



Photons from DM

DM DM — ¢T¢~ is unavoidably accompanied by photons:

e Brehmstralung from ¢* (if £ =7 also 7 — 79 — ~7).
Largest E~ ~ Mppn,, probed by HESS.

e Inverse Compton: ety — e*+/ scatterings on CMB and star-light: E o< ux.
Intermediate E./ ~ E(FEe/me)? ~ 10 GeV probed by FERMIL.

e Synchrotron: eT in the galactic magnetic fit: F o up = B2/2.
Small Ey ~ 10-° eV, probed by radio-observations: Davies, VLT, WMAP.

Problem: ~ point to their source, and it is unclear which one is better for DM.
Solution: astrophysicists anyhow like to observe astrophysical backgrounds.



~ from brehmstralung
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The HESS observations

a) M =10TeV into W"W~, Galactic Center by M =1TeV into u u*, Gaactic Ridge
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DM signals computed for NFW and ov = 10723cm3/sec. We conservatively
impose that no point is exceeded at 30: so the 1st example above is allowed.

Another bound from the DM-dominated Sagittarius dwarf spheroidal galaxy at
24 kpc from us, that was observed by HESS for 11h finding no ~ excess.



Radio observations

Around the GC magnetic fields PN epiattions

B contain more energy than 1
light, diffusion and advection
seem negligible, so all the e+ 102
energy E goes into synchrotron o) \
radiation. The unknown B only ool

determines the maximal vsyn: 0 04 10?2 1 1@ 1o

rinpc

constant B

B in Gauss

dW. 2¢3B BE?
YN =€ d( o 1) where Vsyn = c
dv 3me  Vsyn 47rm§
Davies 1976 oservations at the lower v = 0.408 GHz give the robust and dom-

inant bound as the observed GC radio-spectrum is harder than synchrotron:

dWSyn . ov
dv ~ 2M?2

B/p 2
— 1.4MHz> (_> |
G

me

erg
cm<s

v / dV p° E(v) No(E()) < 47‘(’7“% x 2.1071°
4'" cone

BIG uncertainty in the DM density p at 1pc from the GC: NFW or ...7



Inverse Compton and FERMI

A fraction u~y/upg ~ 1 of the e* energy goes into ey — e/v'.
Initial v: E ~ eV from star-light and £y ~ meV from CMB.
Final v: E.s ~ Ey(Ee/me)? ~ 10 GeV. IC dominates of brehnms at lower E.

EGRET excess not confirmed by FERMI, that agrees with astro background.
FERMI data shown only below 10 GeV, away from GC (10° < latitude < 20°).
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v observations

(v)u scattering in the rock below the detector produce trough-going ui

>dNy

dx

b A ro{ov) p% 3G|2:M2p

H 8t M?2 oY,
where p ~ 0.125 is the momentum fraction carried by each quark in the nucleon
and «a,, = 0.24 TeV/kmwe = —dE/dl is the u™ energy loss.

1
-J-AQ-/O dr

T he total ;ﬂ—L rate negligibly depends on the DM mass M.

SuperKamiokande got the dominant bounds in cones up to 30° around the GC

P, < 0.02/cm?s



T he photon bounds

Assuming NFW, conservative bounds from HESS ~ observations of the Galac-
tic Center, Galactic Ridge, Sagittarius Dwarf and from and radio observations
of the GC exclude the green (allowed by PAMELA) and red region (+FERMI):

DM DM - e*e”, NFW profile DM DM - u*u~, NFW profile DM DM - 77, NFW profile
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(Way out: Sommerfeld x boosts can enhance GC ~ less than e*7?)

FERMI IC measurements can test if DM dgenerates the eT excesses
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An isotheramal profile is ok

DM DM - e"e", Einasto profile
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DM DM — VV — 0T ¢T¢

In M/my to Inmy /my. And smoother e+
DM DM - 4r, Einasto profile
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Best fits for Einasto MED. Charge is the coupling to electric charge:

DM DM — 4e,4u,41
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DM decays



DM decays are compatible with NFW

If instead DM decays with life-time 7, replace p2ov/2M?2 — p' /MT:
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eT excesses suggest SU(2) technicolor!?

DM decays suggests M ~ few TeV, which naturally implies the observed

3/2

5 ~J pDM ~J M ( M ) e_M/TdeC
Pb mp \Tdec

if the DM density is due to a baryon-like asymmetry kept in thermal equilibrium

by weak sphalerons down to Tyec ~ 200 GeV.

Possible if DM is a chiral fermion or is made of chiral fermions.

The DM massis M ~ v ~ 2TeV for A ~ 4x: strong dynamics a-la technicolor.
GUT-suppressed dimension 6 4-fermion operators give 7 ~ Mg /M° ~ 10%°s.
If the technicolor group is SU(2) with techni-g @ = (2,0) under SU(2);®U(1)y

e DM is a QO bound state, scalar and SU(2)-singlet as suggested by data.
e A 4-fermion QQLL operator allows a slow DM — ¢/~ no N ~ W, involved.

e Usual problems of technicolor: minimal correction to the S parameter...



Conclusions

The PAMELA/FERMI/HESS excesses might be due to pulsars or to DM:

e 3 TeV DM that annihilates in 777~ if the DM density p(r) is quasi-constant.
e 3 TeV DM that annihilates in 4u, better if porr IS quasi-constant.
e DM that decays mostly into u or 7, whatever p(r) is.

e sub-TeV DM and a lot of the DM possibilities cannot fit the eT excesses.
This can soon be tested by new experimental results:

e The e¢T fraction must continue to grow at higher energies?
PAMELA up to 270GeV, maybe on 15 May 09. Later AMS.

e IS an excess present in p at higher energies?
One more data-point from PAMELAQO9? Later AMS up to 1 TeV?

e IC (and maybe FSR) must give a v excess: FERMI on 12 August 09.



