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Disclaimers and apologies

00 Aim of this talk: discuss progress in getting the MSSM from
string theory

O This is not going to be a complete survey of all attempts

O | 'will focus on models with the exact MSSM spectrum and
built-in gauge coupling unification

O 1'will only discuss globally consistent string models (modeis obtained

in the framework of F-theory so far do noft fulfill this criTerion)

O 1 will only consider constructions with a clear geometric
interpretation

[0 There are alternatives, satisfying the above criteria, which |
will also not discuss:

o Calabi-Yau compactifications Bouchard, Donag (2005)

Braun, He, Ovrut, Pantev (2005)

° Z]2_| Orbifold Kim, Kyae (2006)

see also talk by J.E. Kim
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Why do string model building at all?

O Wish list:
© find a model that is consistent with olbservation

® try to obtain a better understanding of observation
(quantum numbers of matter, couplings, etc.)

® try to find answers to open questions within this model

o MSSM p problem
e strong CP problem

O Main problem:
first step highly non-trivial

0 Main difference to bottom-up approach: cannot invent
extra ingredients (states, couplings, ...) but have to live
with what string theory gives us

O This talk: merging grand unification, orbifold GUTs and
strings leads to very promising models
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I—Stringy completion of grand unification

Beautiful and ugly aspects of grand unification

© MSSM gauge coupling unification
© One generation of observed matter fits intfo 16 of SO(10)
SO(10) — SU(3) x SU((2) x U(1)y = Gsm
1

16 — (3.2)16®3. )29 (3, i3
e(1)ie(1,220(1,1)
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Beautiful and ugly aspects of grand unification

© MSSM gauge coupling unification
© 16 of SO(10)

» However: Higgs only as doublet(s)

®

10 = (1,2)100(1,2) 10®3. 1) 1303, 1)1y3

doublets: needed triplets: excluded
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Beautiful and ugly aspects of grand unification

© MSSM gauge coupling unification . we take
these hints
© 16 of SO(10) seriously

© However: Higgs only as doublet(s)

Higgs
in split
multiplets

convincing answer:
‘localized gauge groups’

matter
in complete
multiplets
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I—‘Lacul grand unification’

Local grond unification (a specific realization)

SO( ] O) G/ Buchmuller, Hamaguchi, Lebedev, M.R. (2004-2006)
Lebedev, Nilles, Raby, Ramos-Sénchez,
M.R., Vaudrevange, Wingerter (2006-2007)
16
stfandard
model
‘low-energy’ as an inter-
- = )
effective theory section of
S0(10), G'...
in Eg x Eg

(2) SM generation(s): Higgs doubles:
localized in region with live in the "bulk’
SO(10) symmetry veinthe bu
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I—‘Locul grand unification’

Higher-dimensional GUTs vs. heteroftic orbifolds

top-down bottom-up
— Orbifold compactifications | — Orbifold GUTs
Of The heTerOﬁC STring Kawamura (1999-2001)
Dixon, Harvey, Vafa, Witten (1985-86) Altarelli, Feruglio (2001)
lodnez, Nilles, Quevedo (1987) Hall, Nomura (2001)
lodnez, Kim, Nilles, Quevedo (1987) Hebecker, March-Russell (2001)
Font, Ibdnez, Nilles, Quevedo (1988) Asaka, Buchmuller, Covi (2001)
Font, Ibanez, Quevedo, Sierra (1990) Hall, Nomura, Okui, Smith (2001)
Katsuki, Kawamura, Kobayashi, Ohtsubo, Ono, Tanioka (1990) . .
. e simple geometrical
e has UV completion interpretation
o automatically consistent « shares many features
e explain representations with 4D GUTs

combine both approaches

Kobayashi, Raby, Zhang (2004)

Forste, Nilles, Vaudrevange, Wingerter (2004)

N . . n Hebecker, Trapletti (2004)

|m|olemem‘ field-theoretic GUTs in Buchmuiller, Hamaguchi, Lebedev, M.R. (2004-2006)

. . ‘g Faraggi, Forste, Timirgaziu (2006)

non-prime orbifold compactifica- Kim, Kyae (2006)
Lebedev, Nilles, Raby, Ramos-Sénchez,

tions of the heterotic sTring M.R., Vaudrevange, Wingerter (2006-7)




100 MSSMs

from

heterotic aorbifolds
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Cartoon of heterotic orbifold compactification with local SO(10)
GUT structures

internal
space
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= Family structure

241 family models

Focus on models with the fea- SO(10) G
tures: 16 R
0 Two families come from
two equivalent fixed
points

0 3 family comes from
‘somewhere else’ 16 R
(untwisted sector, Ty~ 1) SO(10) ¢

0 Note: this structure has been obtained in the context of
string-derived Pati-Salam models

Kobayashi, Raby, Znang (2004)

O This talk: discuss MSSM models with this structure

Buchmuiller, Hamaguchi, Lebedev, M.R. (2005-2006)
Lebedev, Nilles, Raby, Ramos-Sdnchez, M.R., Vaudrevange. Wingerter (2006-2007)
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L Model selection and ‘statistics’

A Mini-Landscape of MSSM models

Lebedev, Nilles, Raby, Ramos-Sanchez, M.R., Vaudrevange, Wingerter (2006)

[0 We construct 3 x 10% inequivalent models

[0 Out of those 218 have the chiral MSSM spectrum with
Ggm € SU(5) € SO(10) (such that hypercharge is in GUT
normalization)

O The models have vector-like exotics which can, however,
get large masses
Strategy for the remainder of the talk:
0 Discuss one model in detail

(...but please keep in mind that there are ©(100) very similar models...)

O remark: if one abandons the requirement of a 2 + 1 family
sfructure, one has a total of 107 models but only ©O(100)
additional MSSM candidates

Lebedev, Nilles, Ramos-Sanchez, M.R., Vaudrevange (2008)



A heteratic
‘benchmark’ madel
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= Model definition and spectrum

Model definition and spectrum

O. Lebedev. H.R Nilles, S. Raby, S. Ramos-Sénchez, M.R.. R Vaudrevange, A. Wingerter (2007)

O Input = geometry, shift & Wilson lines

X N

o4 Re RE z5
oo (b dbonod) (33 b1k
wo= (oL bheoo) (a8 s ] 30)
o o (Bbbbbbl) (o020s 2
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Model definition and spectrum

O. Lebedev. H.R Nilles, S. Raby, S. Ramos-Sénchez, M.R.. R Vaudrevange, A. Wingerter (2007)

O Input = geometry, shift & Wilson lines

O Gauge group
c SU(5) ¢ SO(10)

G = [SU(3) x SU(2) x U(1)y x U(1)a4] x [SU(4) x SU(2)'] x U(1)’

[GUT normolionion] a [gouge coupling unifico‘rion]

0 }.-3.-4) (0.0,0,0,0,0,0,0)
ts = (0.0,0,0,0,-3,-3-%)(0,0,0,0,0,2,0,0)

normalization not as in SO(10)
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= Model definition and spectrum

Model definition and spectrum

O. Lebedev. H.R Nilles, S. Raby, S. Ramos-Sénchez, M.R.. R Vaudrevange, A. Wingerter (2007)

O Input = geometry, shift & Wilson lines

O Gauge group
c SU(5) ¢ SO(10)

G = [SU(3) x SU(2) x U(1)y x U(1)a4] x [SU(4) x SU(2)'] x U(1)’

0 Spectrum

spectrum = 3 x generation + vector-like w.r.t. Gey x U(1)5



From strings to the MSSM A benchmark model

= Model definition and spectrum

Spectrum @ orbifold point

# irep label # | irrep label
3 (3,21, ])(1/671/3) g 3 (3’ 11, ])(72/3,71/3) Y
3 (1,1 ]’l)(H) & 8 (]>2§]»])(0,*) m;
341 (3,1;1,1)(1/374/3) ol L I G20 H P D FRDRR AN C_j"
3+1 (152?151)(4/2,4) & 1 (]»231»])(1/2,1) £
1 (22; LD 20 hq T L2000 hu
6 (3, 1;1, ])(1/3,2/3) Si 61BN s 0 |0
14 (1,1;],])(1/27*) st 14 (l,l;'l,'l)(il/zﬂ*) S
]6 (l,];l,l)(o’]) h/ ]3 (],];],])(077]) ni
5 | (1,1:1,2),, 7l 51 (1,512, ni
10 (],];1,2)(010) h; 2 (] 2;1 2)00 Yi
6 (lal;4al)(0,*) f’ 6 (] ] 4 ]) ?/
] _ s
2 (]a]v4vl)(—'\/2,—1) f/ 2 ( ) (1/2,1) f’
4 (]a];]a])(oﬂiQ) Xi 32 (] 11 ])U,O SIQ
2 3,1;1,1 (1/02/3) Vi ZNCRRE ])(1/0,72/3) vi
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= Model definition and spectrum

Spectrum @ orbifold point

# irep label # | irrep label
3 (3,21, ])(1/671/3) ai 3 (3’ L, ])(72/3,71/3) u
3 (L, & 8 1 (L2, ), mi
3+1 (3,1;],1)(1/374/3) o L I G20 H P D FRDRR AN C_j"
3+1 (152?151)(4/2,4) & 1 (]»231»])(1/2,1) £
1 (22; LD 20 hq T L2000 hu
6 (3, 1;1, ])(1/3,2/3) di 6l G UL s 0 |0
14| (L1, s+ 141 (LELY s
16 1 (L), n; 131 (LELY)g ni
5 | (1,1;1,2)4, i 51 (1,1:1,2), 5 ni
10 i i '
) {spectrum = 3 generations + vector-like|
( (ST \ /7 (0,%)
. - v F+
2 (LEAD oy |, 2 (]’]'4’])(1/2,1) f
4 | (L) 00 Xi 32 | (1,1:1,1) g, s
2 3, 1;1, l)(71 523 Vi ZNCRRE ])(1/0,72/3) vi
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= Model definition and spectrum

Spectrum @ orbifold point

# | irrep label
3 (3,1;1,1)(72/3’4/3) U
B | (1,211, m
L CTR TR IS D PR '
% 1 (]’23]’])(1/2,1) Z
1 T (L20,0) 0 hu
6 : 6 | BN sy |0
14| (1,151 : \ 4 (LG, s
16| (1,1:1 A 13 (L), n
5 | (1L11,2), k 5] (11.2)0 -
"% | Yspectrum = 3 generations + vector-like |
6 | ( - A
2 | (LLAN Ly | 2 (1,1;11)(1/211) 7
4 | (L5114 Xi 32 | (1L1:1,1) g, s
2 3,1;1,1)( v 2 | BN 6o |V

—1/6,2/3)
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= Model definition and spectrum

Spectrum @ orbifold point

# irep label # | irrep label

3 (3,1;1,1)(72/3’4/3) U

8 | (1,2:1,1)., m;

Q (IR ER TS D PO e’

1 2,1,1) 7

»4 L b)ayem

7 1™ hy

; : \Oi\ O D 1/s,-23 | i

14 ( ) 1/2,%) : ]4\ S

16 W(\H\uw\\i\ig n

5 (]a];]az)(oJ) j/\\\ 5 ; Ni
10 . —
{spectrum = 3 genera vecjor-like |

6 | (
2 (MWBa ) gy | T | 2 fr

\

4 (],];],])O ’( 32 5 , Si
—1 T . \/ <~ . a
2 R e Vi 271 BN 6,23 Vi
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= Model definition and spectrum

Spectrum @ orbifold point

# irep label # | irrep label

51 G21L Y6, | a 3 | (31, 1)(72/314/3) U

3 (1,1 ]’l)(H) & 8 (]>2§]»])(0,*) m;
341 @) e @B Dy | d
3+11 (1,2 ]a])(fl/Z,—T) 4 1 (]»231»])(1/2,1) i

L Q2 R D PR h T (L20,0) 00 | hu

6 3,1;1,1 5 6 (3,1;1,1 j

(’ T )(1/3,2/3) S

14 (LG, s+ 14 (1,0

16 | (1L,151,1), Ay N3 | A71;1,1)

S | (L L,2] B[ allows to didcrimpifiate

1010120 between lepton and Higgs fields Y’

6 (1,1:4,1 e between neutrinos and other singlets f

2 (],];4,])(71/2771) r z \I,I;q’|}(]/2’]) fi+

4 L ]a])(o,iz) Xi 32 (]7]3]»])(070) s/’o

2 3, 1;1, l)(71 523 Vi ZNCRRE ])(1/0,72/3) vi
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A benchmark model

= Model definition and spectrum

Spectrum @ orbifold point

# irep label # | irrep label
3 (3,21, ])(1/671/3) qi 3 (3’ 11, ])(72/3,71/3) Y
3 (L), g 8 | (L2, m;
341 (3,1;],1)(1/374/3) ol L I G20 H P D FRDRR AN C_j"
S+1 (1,2 ]a])(fl/Z,—T) ¢ 1 (]»231»])(1/2,1) 4
1021y 20 hy
6 (3, L, ‘)(1/372/3) existence of SM singlets [1/5,2/5 | @
14 (],1;],])(1/27*) with q&L:iQ 1/2,%) S
16 (l,l;l,l)(oﬁ]) i ~ " » "J(0,—1) i
5 | (1,1:1,2),, gl S| (L11L2)q Tl
10 | (1,1;1,2) 4 h; 2 1 (1,21,2),, Vi
6 (1,1;4,])(0,*) f 6 (]’] 4’])(0,*) f/
. _ +
2 (L 14,1y f 2 (]’] ’])(1/2,1) f
4| 1) 60 2 32 | (1L,51,1)qy s?
2 3,1;1,1 (1/02/3) Vi ZNCRRE ])(1/0,72/3) vi
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= Decoupling of exotics and 1. term

Decoupling of exotics vs. pu ferm

O

Decoupling of exotics

X,'Xj Siy - Si,

vev—mass term

We have checked that:

O

exotics’ mass matrices have full rank with

s = Ggm x SU(4) singlets with gz, = 0or +2

s vevs are consistent with supersymmetry

Note that giving vevs to (localized) fields corresponds to
blowing up the orbifold singularities

for recent work see e.g. Grootf Nibbelink, Held, Ruehle, Trapletti, Vaudrevange
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= Decoupling of exotics and 1. term

Decoupling of exotics vs. pu ferm

[0 Decoupling of exotics

X,'Xj Siy - Si,

vev—mass term

We have checked that:
O exotfics” mass matrices have full rank with

s = Ggm x SU(4) singlets with gz, = 0or +2

O s vevs are consistent with supersymmetry

0 Have obtained an MSSM vacuum with R-parity

Questions:

O Is there a reason why the Higgs doublets” mass is much
smaller than the exotics” masses?

O Is there areason why the Higgs mass is of the order of the
wedak scale?
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[

p-term

A stringy solution fo the p problem

O The pair hy-hy are the only fields from Us
O hy hgis ‘neutral” w.r.t, o the selection rules
0O As aconseguence: for any monomial .7 = s;, ...

N

Mhyohg € W ~ A €W
0 We find that
o< ()

O question: why is (%) small



From strings to the MSSM A benchmark model

[

p-term

Large hierarchies from approximate R symmetries

Kappl, Nilles, Ramos-Sanchez, M.R., Schmidt-Hoberg, Vaudrevange (2009)

0 We find that R symmetries allow us to control the
superpotential
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L

Large hierarchies from approximate R symmetries

Kappl, Nilles, Ramos-Sanchez, M.R., Schmidt-Hoberg, Vaudrevange (2009)

0 We find that R symmetries allow us to control the
superpotential

approximate continuous R symmetries ~ (#') ~ (s)N

O Inour’ Ze-ll orbifold one has exact discrete R symmetries
e.g. Araki, Kobayashi, Kubo, Ramos-Sénchez, M.R., Vaudrevange (2008)

GR = [Zé X Zg X ZQ]R
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L

p-term

Large hierarchies from approximate R symmetries

Kappl, Nilles, Ramos-Sanchez, M.R., Schmidt-Hoberg, Vaudrevange (2009)

0 We find that R symmetries allow us to control the
superpotential

approximate continuous R symmetries ~ (#') ~ <s)N

O Inour’ Ze-ll orbifold one has exact discrete R symmetries

e.g. Araki, Kobayashi, Kubo, Ramos-Sénchez, M.R., Vaudrevange (2008)

GR = [Zé X Zg X ZQ]R

O Discrete symmetries imply approximate continuous
symmetries
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Large hierarchies from approximate R symmetries

Kappl, Nilles, Ramos-Sanchez, M.R., Schmidt-Hoberg, Vaudrevange (2009)

0 We find that R symmetries allow us to control the
superpotential

approximate continuous R symmetries ~ (#') ~ <s)N

O Inour’ Ze-ll orbifold one has exact discrete R symmetries

e.g. Araki, Kobayashi, Kubo, Ramos-Sénchez, M.R., Vaudrevange (2008)

GR = [Zé X Zg X ZQ]R

O Discrete symmetries imply approximate continuous
symmetries

O Inthe ‘'vacuum’ discussed so far one obtains

no~ <W> ~ <5>9 ~ m3/2
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Stringy solutions to the u problem - literature

00 There exist proposals for precisely this situation

O ufromw

Casas, Munoz (1993)

O ufromK

Antoniadis, Gava, Narain, Taylor (1994)
Brignole, Ibdnez, Munoz (1995-1997)

K S —|og}(}»f3) (23,<)—\(hu+h_d) (Pa+ha)]

Kdhler modulus] [ complex structure modulus |

. leads effectively to the Giudice-Masiero mechanism

Giudice, Masiero (1988)
cf. talk by A. Hebecker
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[

p-term

Stringy solutions to the u problem - literature

00 There exist proposals for precisely this situation

O ufromw

Casas, Munoz (1993)

O ufromK

Antoniadis, Gava, Narain, Taylor (1994)
Brignole, Ibdnez, Munoz (1995-1997)

0 Model allows to use both mechanisms (simultaneously)

~ expect 1 ~ mz)

0 ‘Combination’ of both mechanisms appears
phenomenologically viable

for related work see talk by S. Kraml
[0 note: there are attractive alternative (though related)
explanations of a suppressed ;. term

Buchmuiller, Ludeling, Schmidt (2007)
Buchmuiller, Schmidit (2008)
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= Gauge-top unification

Gauge-top unification (GTU)

D U nTW|STed SeCTOI’ (:internol components of the gauge bosons)

| field-theoretic

description stTe
Uy | ~As+iAs up+...
U | ~A;+i1As ar+...
Us | ~Ag+iAg | hu+...

Renormalizable coupling 009

0.08

YU Qy hy NN

006 5
yr~g@ Mcomp < 005 ‘

0.04

O all other Yukawa @2
couplings are o N
suppressed (i.e. 002
. 3456 7 8 910111213141516 17
appear at higher log,o (4/GeV)

orderin s)
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= Gauge-top unification

GTU in more detail

1 Focus on 6D orbifold GUT limit Bl i, St Goon
SU(5) x U(1) SU(4) x SU(2), x U(1Y
10+5+1=16
™ Ré
10+5+1=16
SU(5) x U(1) SU(4) x SU(2), x U(1Y

I T Rs |
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= Gauge-top unification

GTU in more detail
0 Focus on 6D orbifold GUT limit

O For Rs > Ry this is similar to a model by Burdman & Nomura

Burdman, Nomura (2003)
SU(5) x U(1) — SU(4) x SUQ2)L x U(1Y

- SU(6) — —_

V.35, H: (20,20°) P
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= Gauge-top unification

GTU in more detail
0 Focus on 6D orbifold GUT limit
O For Rs > Ry this is similar to a model by Burdman & Nomura

0 Because of localized Fayet-lliopoulos ferms at the fixed
points the components ¢ and ¢° of the bulk hypermultiplet,
containing g; and Us, attain non-trivial profiles

Lee, Nilles, Zucker (2004)
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= Gauge-top unification

GTU in more detail
0 Focus on 6D orbifold GUT limit

O For Rs > Ry this is similar to a model by Burdman & Nomura

0 Because of localized Fayet-lliopoulos ferms at the fixed
points the components ¢ and ¢° of the bulk hypermultiplet,
containing g; and Us, attain non-trivial profiles

O This leads to a suppression of y; at the compactification

scale
Hosteins, Kappl, M.R., Schmidt-Hoberg (2009)
08 . 4
o 06
=
>
04
02 _ + — 1
la, tr =023 R 1
R
. . .




From strings to the MSSM

A benchmark model

= Gauge-top unification

Top-down motivation for orbifold GUTs

O y; correlated with tan ¢

O——F—r T
L . | | 4
: 'l l‘ My o= 1TeV |
1 | 4
8 1 mo=1TeV
\ 1 4
3 L Ap=-1TeV |
\ \ 4
6
Q
g |
4
2
07 L L L L L L L L L L L
0.50 055 0.60 0.65

Yt[Mgur]

0.70
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Top-down motivation for orbifold GUTs

O y; correlated with tan ¢

0 Reasonable values for tan g seem to require rather
anisotropic compactifications

Hosteins, Kappl, M.R., Schmidt-Hoberg (2009)
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= Gauge-top unification

Top-down motivation for orbifold GUTs

O y; correlated with tan ¢

0 Reasonable values for tan g seem to require rather
anisotropic compactifications

Hosteins, Kappl, M.R., Schmidt-Hoberg (2009)

0 Highly anisofropic compactifications allow us to resolve the
discrepancy between GUT and string scales

Witten (1996)

Hebecker, Trapletti (2004)

1 1 ]
and Rzé ~ Mstring B 8.6-]O]7G6V

Ro = Mgur

O Orbifold GUT limit appears to yield valid intermediate
description

cf. talk by A. Hebecker
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L Flavor structure

Comments on the structure of soft masses

O Two families reside on two equivalent orbifold fixed points

SU(5) x U(1) SU(4) x SU(2)L x U(1)
10+5+1=16
10+5+1=16

SU(5) x U(1) SU(4) x SU(2), x U(1Y
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L Flavor structure

Comments on the structure of soft masses

O Two families reside on two equivalent orbifold fixed points

O This leads to a discrete D, flavor symmmetry under which the
first two generations fransform as a doublet

Kobayashi, Raby, Zhang (2004)
Kobayashi, Nilles, Piéger, Raby, M.R. (2006)
for other interesting applications of non-Abelian discrete flavor symmetries see talk by C. Hagedorn
O Note: anomalies of non-Abelian discrete symmetries
cancel in string-derived models

Araki, Kobayashi, Kubo, Ramos-Sanchez, M.R., Vaudrevange (2008)
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Comments on the structure of soft masses

O Two families reside on two equivalent orbifold fixed points

O This leads to a discrete D, flavor symmmetry under which the
first two generations fransform as a doublet

O At this level, the structure of the soft mass ferms is

a 0 O
m = 0 a0
0 0 b

Ko, Kobayashi, Park, Raby (2007)
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L Flavor structure

Comments on the structure of soft masses

O Two families reside on two equivalent orbifold fixed points

O This leads to a discrete D, flavor symmmetry under which the
first two generations fransform as a doublet

O At this level, the structure of the soft mass ferms is

a 0 O
m = 0 a0
0 0 b

O The singlet VEVs (s;) that generate the Yukawa coupling
also break Dy

0O MFV-like structure of soft masses
m ~al+pYY

Buras, Gambino, Gorbahn, Jager, Silvestrini (2000)

MF\/ = Minimol F|CIVOI’ \/ioloﬂon D’Ambrosio, Giudice, Isidori, Strumia (2002)
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L Flavor structure

Example: soff masses of squark doublets

Paradisi, M.R., Schieren, Simonetto (2008)
Colangelo, Nikolidakis, Smith (2008)
cf. talk by C. Smith

0 Ansafz (@ Mgum):

M2 = oaq L+ B ViVa+ B2 ViVa+ (B3 YiVa YiYu+he)
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L Flavor structure

Example: soff masses of squark doublets

Paradisi, M.R., Schieren, Simonetto (2008)
Colangelo, Nikolidakis, Smith (2008)
cf. talk by C. Smith

0 Ansafz (@ Mgum):

M2 = oaq L+ B ViVa+ B2 ViVa+ (B3 YiVa YiYu+he)

0 The form of ané is RG invariant, only the coefficients o; & 3
run
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Example: Running of 3,

A benchmark model

L Flavor structure

“SPS + MFV”
Bi = o @ Mgur 10f
aj = M3 @ Mgur
05}
B1
— oo0f
@y
—05f
~10h
SPS Point Mg

la

100GeV 250GeV

2345678 910111213141516
| Q
OgGeV
my, A tan g
-100GeV 10
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L Flavor structure

Example: Running of 3,

“SPS + MFV”

Bi = Bo @ Mgur
aj = M3 @ Mgur

SPS Point mg miy, A tang
2 1450GeV 300GeV 0 10
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L Flavor structure

Example: Running of 3,

“SPS + MFV”
Bi = Bo @ Mgur 10F
o = m% @ MGUT
05f
B
— 00
@y ’f’ﬁ
-05¢}
O
234567 8910111213141516
| Q
OgGeV
SPS Point  myg miy, A tang

3 90GeV 400GeV 0 10
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L Flavor structure

Example: Running of 3,

*sPS( Bottom-line: )
s—| * SUSY flavor problem(s) may be
alf — avoided/ameliorated because of stringy Da
flavor symmetry
« Deviation of m? from unit matrices at Mgur
might not even be measurable atf low
_ energies y
—10b . \
2345678 910111213141516
0s 2
v
SPS Point mg miy, A tang

3 90GeV 400GeV 0 10
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Summary of search strategy

[] We explore possibilities of
getting the MSSM from strings
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= Search strategy

Summary of search strategy

L] We explore possibilities of
getting the MSSM from strings

16
SO(10)

L] The concept of ‘local grand
unification” has led us to
beautiful spots
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Summary of features

[] 3 x 16 + Higgs + nothing

No
exotics
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[] 3 x 16 + Higgs + nothing

[ SU(3) x SU2) x U(1)y x Ghia

¥y ey
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gravity strang force
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L Main results

Summary of features

[] 3 x 16 + Higgs + nothing

[] SU(3) x SU2) x U(1)y x Gig om

0.08
[] unification 007

0.06

a3

005

0.04
@2
003

0.02 @

34567 8 91011121314151617
log, o (1/GeV)
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L Main results

Summary of features

[] 3 x 16 + Higgs + nothing
[ SU(3) x SU2) x U(1)y x G el el

(] unification PRE M

[] R-parity
... but potential problems with
dimension 5 proton decay
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L Main results

Summary of features
[

[
[
[
[

3 x 16 + Higgs + nothing
SU(3) x SU(2) x U(1)y x Gy
unification

R-parity

solution fo the p-problem

i.e. well-known solutions to the p-problem are automatically

realized in explicit models

o~ )

(7)) < 1 from ap-

proximate
symmetries

U
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L Main results

Summary of features

[] 3 x 16 + Higgs + nothing

[J SU@3) x SUQ2) x U(1)y x Gyia

[] unification 0o
. 0.08 a
[] R-parity o 3
[] solution to the p-problem o
= 005
[l gauge-top unification: y; S g | o,
@ Mgur. y;/g related to 003
geometry (anisotropy) & ol @
po’renﬁolly realistic 34567 891011121314151617

100, (1/GeV)

flavor structures a la
Froggatt-Nielsen
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L Main results

Summary of features

[] 3 x 16 + Higgs + nothing

[J SU@3) x SUQ2) x U(1)y x Gyia

[] unification 16
[] R-parity
o) |
[] solution to the p-problem
[] gauge-top unification 16
[] Non-Abelian discrete flavor

symmetries relaxing/solving the
supersymmetric flavor
problems
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Summary of features

[] 3 x 16 + Higgs + nothing
SU@3) x SU(2) x U(1)y x Ghia
unification

R-parity

solution fo the p-problem

gauge-top unification

O Y B A

Non-Abelian discrete flavor
symmetries

]

see-saw
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Summary of features

[] 3 x 16 + Higgs + nothing
SU(3) x SU(2) x U(1)y x Gpia
unification

R-parity

solution to the u-problem

gauge-top unification

O O O o g o

Non-Abelian discrete flavor
symmetries

[] see-saw

[] “realistic’ hidden sector

L Main results

pling

2 4 6 8 10 12 14 16

logy, (A/GeV)

scale of hidden sec-
tor strong dynamics
is consistent with TeV-
scale soft masses and
realistic gauge cou-
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L Main results

Summary of features

[] 3 x 16 + Higgs + nothing
[] SU(3) x SU(2) x U(1 ;
(3) > 8U2) < U1y x Cnia that's what we
[] unification searched for. ..
[] R-parity
[] solution to the p-problem
[] gauge-top unification
...that's what we
[] Non-Abelian discrete flavor got “for free’
symmetries . .,
stringy surprises
[] see-saw
[] “realistic’ hidden sector



Mille
grazie
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0 see-saw couplings: Waee—saw = Y2 hy ¢ 7 + My ;)
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0 see-saw mass matrix
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0 naive GUT expectation:
m, ~ (100GeV)?/10'® GeV ~ 103 eV
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I—See-st:lw couplings

See-saw couplings

0 see-saw couplings: Waee—saw = Y2 hy ¢ 7 + My ;)
0O instring models M, Y, ~ (s")

0 see-saw mass matrix

. 2,2

0 naive GUT expectation:
m, ~ (100GeV)?/10'® GeV ~ 103 eV

. suspiciously close to observed values

JAM2, ~ 004eV & /Am2, ~0.008eV
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I—See-sclw couplings

Heterotic see-saw

W. Buchmdiller, K. Hamaguchi, O. Lebedev, M.R. (2006)
W. Buchmdiller, K. Hamaguchi, O. Lebedeyv, S. Ramos-Sdnchez, M.R. (2007)

O. Lebedev. H.R Nilles, S. Raby, S. Ramos-Sénchez, M.R.. R Vaudrevange, A. Wingerter (2007)

O there are O(100) neutrinos (= R-parity odd SM singlets)
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O there are O(100) neutrinos (= R-parity odd SM singlets)

0 O(100) contributions to the efecivey NEUTTINO Mass operator
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I—See-sclw couplings

Heterotic see-saw

W. Buchmdiller, K. Hamaguchi, O. Lebedev, M.R. (2006)
W. Buchmdiller, K. Hamaguchi, O. Lebedeyv, S. Ramos-Sdnchez, M.R. (2007)

O. Lebedev. H.R Nilles, S. Raby, S. Ramos-Sénchez, M.R.. R Vaudrevange, A. Wingerter (2007)

O there are O(100) neutrinos (= R-parity odd SM singlets)
0 O(100) contributions to the efecivey NEUTTINO Mass operator

O effective suppression of the see-saw scale

M.,

seems consistent with olbservation

(, [Am2, ~0.04eV & /Am?, ~ 0.008 eV)

sol —
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Heterotic see-saw

W. Buchmdiller, K. Hamaguchi, O. Lebedev, M.R. (2006)
W. Buchmdiller, K. Hamaguchi, O. Lebedeyv, S. Ramos-Sdnchez, M.R. (2007)

O. Lebedev. H.R Nilles, S. Raby, S. Ramos-Sénchez, M.R.. R Vaudrevange, A. Wingerter (2007)

O there are O(100) neutrinos (= R-parity odd SM singlets)
0 O(100) contributions to the efecivey NEUTTINO Mass operator
O effective suppression of the see-saw scale

seems consistent with olbservation
(, /Amﬁtm ~0.04eV & Am§01 ~ (0.008 eV)

Main conclusion:

See-saw is a generic feature in heterotic MSSM vacua
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Heterotic see-saw

W. Buchmdiller, K. Hamaguchi, O. Lebedev, M.R. (2006)
W. Buchmdiller, K. Hamaguchi, O. Lebedeyv, S. Ramos-Sdnchez, M.R. (2007)

O. Lebedev. H.R Nilles, S. Raby, S. Ramos-Sénchez, M.R.. R Vaudrevange, A. Wingerter (2007)

O there are O(100) neutrinos (= R-parity odd SM singlets)
0 O(100) contributions to the efecivey NEUTTINO Mass operator
O effective suppression of the see-saw scale

seems consistent with olbservation
(, /Amﬁtm ~0.04eV & Am§01 ~ (0.008 eV)

Main conclusion:

See-saw is a generic feature in heterotic MSSM vacua

[0 Note: in Z3 orbifolds one arrives at a different conclusion

cf. Giedt, Kane, Langacker, Nelson (2005)
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Two ingredients:
© One can show:

w has

U(1)r symmetry




From strings to the MSSM “Appendix”

Why is (#") small?

I—Lurge hierarchies from approximate R symmetries

Kappl, Nilles, Ramos-Sanchez, M.R., Schmidt-Hoberg, Vaudrevange (2008)

Two ingredients:
© One can show:

w has

U(1)r symmetry

® Orbifolds have high-power discrete R symmetries
~ approximate R symmetries
AW ~ (H)N with N large
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I—Lurge hierarchies from approximate R symmetries

(W) =0because of U(1), ()

Kappl, Nilles, Ramos-Sanchez, M.R., Schmidt-Hoberg, Vaudrevange (2008)

aim: show that

W has

U(1)r symmetry

Consider a superpotential

~, N /N,
W = ZCn]...nMG)]] OW
with an exact R-symmetry
/2N e2i“W, Oj N (,)j/ — eirj(» Oj

where each monomial in 7 has total R-charge 2.
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I—Lurge hierarchies from approximate R symmetries

(#')y =0because of U(1), D

Kappl, Nilles, Ramos-Sanchez, M.R., Schmidt-Hoberg, Vaudrevange (2008)

Consider a field configuration (¢;) with
o

FI’:

95, ~ 0 ate =)

Under an infinitesimal U(1)r fransformation, the superpotential
tfransforms nontrivially

o
W(g) — W(4) = WW/’HZ—%I, Ay
—~ 0«
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I—Lurge hierarchies from approximate R symmetries

(#')y =0because of U(1), D

Kappl, Nilles, Ramos-Sanchez, M.R., Schmidt-Hoberg, Vaudrevange (2008)

Consider a field configuration (¢;) with
o

Fi = =0 atg = (9

3('),

Under an infinitesimal U(1)r fransformation, the superpotential
tfransforms nontrivially

W) = Hf) = 7o)+ Y 3 da
Dy
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I—Lurge hierarchies from approximate R symmetries

(#')y =0because of U(1), D

Kappl, Nilles, Ramos-Sanchez, M.R., Schmidt-Hoberg, Vaudrevange (2008)

Consider a field configuration (¢;) with
o

FI’:

95, ~ 0 ate =)

Under an infinitesimal U(1)r fransformation, the superpotential
tfransforms nontrivially

() — W(O = V(¢ —i—Z%AO L 2oy

This is only possible if (#) = 0!

bottom-line:

W has

U(1)r symmetry
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Comments
© Relation to Nelson-Seiberg theorem Nelson & Seberg (1994)
setting without requires
supersymmetric  U(1)p symmetry

ground state
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I—Lurge hierarchies from approximate R symmetries

Comments

© Relation to Nelson-Seiberg theorem Nelson & Seberg (1994)
setting without requires
supersymmetric does not imply U(1)r symmetry

ground state -
. ov ) , .
@ in local SUSY : Fre Oand (#) =0imply D;#7 =0
&

(Thatis,a U(1)p é{/mme’rry implies Minkowski solutions.)
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Comments

© Relation to Nelson-Seiberg theorem Nekson & Selberg (1994)
setting without requires
supersymmetric does not imply U(1)r symmetry

ground state -
. ov ) , .
@ in local SUSY : Fre Oand (#) =0imply D;#7 =0
y

(Thatis,a U(1)p Sx,/mmefry implies Minkowski solutions.)

® for a continuous U(1), symmetry we would have
e a supersymmetric ground state with 7 = 0and U(1)r
spontaneously broken

e a problematic R-Goldstone boson
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I—Lurge hierarchies from approximate R symmetries

Comments
© Relation to Nelson-Seiberg theorem Nekson & Selberg (1994)
setting without requires
supersymmetric does not imply U(1)r symmetry
ground state -
. ov ) . .
@ in local SUSY : Fre Oand (#) =0imply D;#7 =0

(Thatis,a U(1)p Sx’/mmefry implies Minkowski solutions.)

® for a continuous U(1), symmetry we would have
e a supersymmetric ground state with 7 = 0and U(1)r
spontaneously broken

e a problematic R-Goldstone boson

However, the above U(1)z-symnmetry appears as an
accidental continous symmetry resulting from an exact
discrete symmetry of (high) order N; hence

e Goldstone-Boson massive and harmless

e a nonftrivial VEV of % of higher order in ¢
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I—Lurge hierarchies from approximate R symmetries

Origin of high-power discrete R-symmetries

0 Orbifold breaks SO(6) ~ SU(4) Lorentz symmetry of
compact space to discrete subgroup
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I—Lurge hierarchies from approximate R symmetries

Origin of high-power discrete R-symmetries

0 Orbifold breaks SO(6) ~ SU(4) Lorentz symmetry of
compact space to discrete subgroup

O Specifically, in ‘our’ Ze-Il orbifold one has

Cr = [Z¢ x Lz x Lo

e.g. Araki, Kobayashi, Kubo, Ramos-Sadnchez, M.R., Vaudrevange (2008)
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Application: moduli stabilization

There exist various possibilities to fix the gauge coupling/stabilize
the dilaton:
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condensates
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Krasnikov (1987) o
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Application: moduli stabilization

There exist various possibilities to fix the gauge coupling/stabilize
the dilaton:

non-perturbative corrections
to the Kdhler potential

e Race-track

o K&hler stabilization 6

Casas (1996) “‘An

. =

Binétruy, Gaillard & Wu (1996) o

£
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Application: moduli stabilization

There exist various possibilities to fix the gauge coupling/stabilize
the dilaton:

e.g. KKLT proposal

2
e Race-track Y 15
« K&hler stabilization £
e Flux >§0_5
compactification
e.g. Kachru, Kallosh, Linde & Trivedi (2003) O100 150 200 250 300 350 400

o
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Application: moduli stabilization

There exist various possibilities to fix the gauge coupling/stabilize

the dilaton:

Race-frack
e Kdhler stabilization

e Flux
compactification

e efc. ...
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Constant + exponential scheme

O KKLT type proposal

Wy = C+Ae 9°

O Gravitino mass

ms /2 é TeV
—_—

Mz ~ |C| lc| ~ 1071

00 Philosophy of flux compactifications: many vacua, in some
of them ¢ might be small by accident

O Our proposal: small expectation of the perturbative
superpotential due to approximate U(1), symmetry

%ff - <7ﬂpert>+AeiOS

(Wpert) ~ ()N 'gaugino condensate”
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Embedding into the MiniLandscape

0 We analyzed a couple of models
0 We find (#pert) ~ (S)N with N =9...26

O Assuming that the FI term sefs the scale of the ~ (s) this
leads to

W) ~ (Wpers) ~ 107900
O note: the solutions of F-term equations are points in field
space (no moduli in s-space)

[0 application: this
e generates a suppressed p tferm
po~ W)~ Mayo
o fixes the gauge coupling / dilaton

[0 question: is the dilaton fixed at realistic values?
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0 Relation between mz,» < Mp and the scale of hidden
sector strong dynamics

G = GSMXG4

m ~ —
m ﬁof hidden sector strong dynamics
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= Gauge coupling vs. scale of hidden sector sirong dynamics

Hidden sector strong dynamics

0 Relation between mz,» < Mp and the scale of hidden
sector strong dynamics

0 We estimate the scale
of hidden sector strong
dynOm|CS (i.e. calculate the g3-

function)

9, (1)

11 12 13 14 15 16
109y, (1/GeV)
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O Distribution of the (naive) scale of hidden sector strong
dynamics
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# of models
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O Distribution of the (naive) scale of hidden sector strong
dynamics
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Properties of the hidden sector

O Distribution of the (naive) scale of hidden sector strong
dynamics

25
20
15
10

# of models

2 4 6 8 10 12 14 16
log,,(A/GeV)

0 Note: hidden sector usually stronger coupled

bottom-line:

statistical preference for intermediate scale of
condensation / a realistic gauge coupling
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Yukawa structure

0 Yukawa couplings in the configuration discussed so far wto ¢

$ & & 0 0 & £ 0
Yo=| & & ¢ YYo= 0 & 0|, Ye=| 0 &
) 0 5 £ 0 0

s O(g 0 s

(&)

each s entry represents a monomial of singlets with the indicated order
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Yukawa structure

O Yukawa couplings in the configuration discussed so far wio ¢

$ & S 0 0 ¢ & s
Yo=| & & ¢ ,Ya=| 0 & 0 |, Ye=| 0 ¢
s 0(9) 0 0 ¢ s 0

O We find many other configurations with the same
characteristics (1 ~ ms 2, all exotics decouple, etc.) but
different Yukawa couplings

R 0 s s & s
Yo=| & & & . Ya=10 & |, Ye=| & s
el (e) 0 s ¢ $ s

0 Effective Yukawa couplings are vacuum/moduli
dependent

o % o
N———
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Yukawa structure

O Yukawa couplings in the configuration discussed so far wio ¢

$ & S 0 0 ¢ & s
Yo=| & & ¢ ,Ya=| 0 & 0 |, Ye=| 0 ¢
s 0(9) 0 0 ¢ s 0

O We find many other configurations with the same
characteristics (1 ~ ms 2, all exotics decouple, etc.) but
different Yukawa couplings

o % o
N———

O Effective Yukawa couplings ~ s vanish @ orbifold point

hierarchical do we live
Yukawa close to an
couplings orbifold point

in Nature 77?7
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