From strings to the MSSM

Padova, 26.5.2009

Based on collaborations with:

W. Buchmüller, K. Hamaguchi, P. Hosteins, R. Kappl, T. Kobayashi,

O. Lebedev, H.P. Nilles, P. Paradisi, F. Plöger, S. Raby,

- S. Ramos-Sánchez, R. Schieren, K. Schmidt-Hoberg,
- C. Simonetto, P. Vaudrevange & A. Wingerter

partial reviews:

- M.R., arXiv:0711.1582 (hep-ph)
- H.P. Nilles, S. Ramos-Sánchez, M.R., P. Vaudrevange, EPJ C 59, 2 (=arXiv:0806.3905 (hep-th))

Disclaimer and apologies

Disclaimers and apologies

Aim of this talk: discuss progress in getting the MSSM from string theory From strings to the MSSM

Disclaimer and apologies

Disclaimers and apologies

- Aim of this talk: discuss progress in getting the MSSM from string theory
- This is **not** going to be a complete survey of all attempts

for other attempts see talk by A. Uranga

Disclaimers and apologies

- Aim of this talk: discuss progress in getting the MSSM from string theory
- This is **not** going to be a complete survey of all attempts
- I will focus on models with the exact MSSM spectrum and built-in gauge coupling unification

Disclaimers and apologies

- Aim of this talk: discuss progress in getting the MSSM from string theory
- This is **not** going to be a complete survey of all attempts
- I will focus on models with the exact MSSM spectrum and built-in gauge coupling unification
- I will only discuss globally consistent string models (models obtained

in the framework of F-theory so far do not fulfill this criterion)

Disclaimers and apologies

- Aim of this talk: discuss progress in getting the MSSM from string theory
- This is **not** going to be a complete survey of all attempts
- I will focus on models with the exact MSSM spectrum and built-in gauge coupling unification
- I will only discuss globally consistent string models (models obtained in the framework of F-theory so far do not fulfill this criterion)
- I will only consider constructions with a clear geometric interpretation

Disclaimer and apologies

Disclaimers and apologies

- Aim of this talk: discuss progress in getting the MSSM from string theory
- This is **not** going to be a complete survey of all attempts
- I will focus on models with the exact MSSM spectrum and built-in gauge coupling unification
- I will only discuss globally consistent string models (models obtained in the framework of F-theory so far do not fulfill this criterion)
- I will only consider constructions with a clear geometric interpretation
- There are alternatives, satisfying the above criteria, which I will also not discuss:
 - Calabi-Yau compactifications

Bouchard, Donagi (2005) Braun, He, Ovrut, Pantev (2005)

• \mathbb{Z}_{12} -I orbifold

Kim, Kyae (2006) see also talk by J.E. Kim

Wish list:

1 find a model that is consistent with observation

Wish list:

1 find a model that is consistent with observation

2 try to obtain a better understanding of observation (quantum numbers of matter, couplings, etc.)

- Wish list:
 - 1 find a model that is consistent with observation
 - 2 try to obtain a better understanding of observation (quantum numbers of matter, couplings, etc.)
 - 3 try to find answers to open questions within this model
 - MSSM μ problem
 - strong CP problem
 - ...

- Wish list:
 - 1 find a model that is consistent with observation
 - 2 try to obtain a better understanding of observation (quantum numbers of matter, couplings, etc.)
 - 3 try to find answers to open questions within this model
 - MSSM μ problem
 - strong CP problem
 - ...
- Main problem: first step highly non-trivial

- Wish list:
 - 1 find a model that is consistent with observation
 - 2 try to obtain a better understanding of observation (quantum numbers of matter, couplings, etc.)
 - 3 try to find answers to open questions within this model
 - MSSM μ problem
 - strong CP problem
 - ...

Main problem:

first step highly non-trivial

Main difference to bottom-up approach: cannot invent extra ingredients (states, couplings, ...) but have to live with what string theory gives us

- Wish list:
 - 1 find a model that is consistent with observation
 - try to obtain a better understanding of observation (quantum numbers of matter, couplings, etc.)
 - 3 try to find answers to open questions within this model
 - MSSM μ problem
 - strong CP problem
 - ...

Main problem:

first step highly non-trivial

- Main difference to bottom-up approach: cannot invent extra ingredients (states, couplings, ...) but have to live with what string theory gives us
- This talk: merging grand unification, orbifold GUTs and strings leads to very promising models

Stringy completion of grand unification

Beautiful and ugly aspects of grand unification

 \odot MSSM gauge coupling unification @ $M_{
m GUT} \sim 10^{16}\,{
m GeV}$

Beautiful and ugly aspects of grand unification

- SMSSM gauge coupling unification
- \odot One generation of observed matter fits into 16 of SO(10)

SO(10) \rightarrow SU(3) × SU(2) × U(1)_Y = G_{SM} 16 \rightarrow (3,2)_{1/6} \oplus ($\overline{3}$, 1)_{-2/3} \oplus ($\overline{3}$, 1)_{1/3} \oplus (1,1)₁ \oplus (1,2)_{-1/2} \oplus (1,1)₀

Beautiful and ugly aspects of grand unification

- MSSM gauge coupling unification
- ◎ **16** of SO(10)
- However: Higgs only as doublet(s)

Motivation

Stringy completion of grand unification

Beautiful and ugly aspects of grand unification

- SMSSM gauge coupling unification
- ◎ **16** of **SO(10)**

... we take these hints seriously

However: Higgs only as doublet(s)

convincing answer:

'localized gauge groups'

From strings to the MSSM

Motivation

Local grand unification'

Local grand unification (a specific realization)

Motivation

Local grand unification'

Higher-dimensional GUTs vs. heterotic orbifolds

top-down \rightarrow Orbifold compactifications of the heterotic string

Dixon, Harvey, Vafa, Witten (1985-86) Ibáñez, Nilles, Quevedo (1987) Ibáñez, Kim, Nilles, Quevedo (1987) Font, Ibáñez, Nilles, Quevedo (1988) Font, Ibáñez, Quevedo, Sierra (1990) Katsuki, Kawamura, Kobayashi, Ohtsubo, Ono, Tanioka (1990)

- has UV completion
- automatically consistent
- explain representations

 $\begin{array}{l} \text{bottom-up} \\ \rightarrow \text{Orbifold GUTs} \end{array}$

- Kawamura (1999-2001) Altarelli, Feruglio (2001) Hall, Nomura (2001) Hebecker, March-Russell (2001) Asaka, Buchmüller, Covi (2001) Hall, Nomura, Okui, Smith (2001)
- simple geometrical interpretation
- shares many features with 4D GUTs

combine both approaches

implement field-theoretic GUTs in non-prime orbifold compactifications of the heterotic string Kobayashi. Raby, Zhang (2004) Fôrste, Nilles, Vaudrevange, Wingerter (2004) Hebecker, Trapletti (2004) Buchmüller, Hamaguchi, Lebedev, M.R. (2004-2006) Faraggi, Förste, Timirgaziu (2006) Lebedev, Nilles, Raby, Ramos-Sánchez, M.R., Vaudrevange, Wingerter (2006-7)

. .

100 MSSMs from

heterotic orbifolds

100 MSSMs

Orbifold compactification with local SO(10) GUT

Cartoon of heterotic orbifold compactification with local SO(10) GUT structures

AD space-tir

Orbifold compactification with local SO(10) GUT

Cartoon of heterotic orbifold compactification with local SO(10) GUT structures

100 MSSMs

Orbifold compactification with local SO(10) GUT

100 MSSMs

Family structure

2+1 family models

Focus on models with the **fea-tures**:

- Two families come from two equivalent fixed points
- 3rd family comes from
 'somewhere else'
 (untwisted sector, T_{k>1})

Family structure

2+1 family models

Focus on models with the **fea-tures**:

- Two families come from two equivalent fixed points
- 3rd family comes from 'somewhere else' (untwisted sector, T_{k>1})

Note: this structure has been obtained in the context of string-derived Pati-Salam models

Kobayashi, Raby, Zhang (2004)

100 MSSMs

-Family structure

2+1 family models

Focus on models with the **fea-tures**:

- Two families come from two equivalent fixed points
- 3rd family comes from 'somewhere else' (untwisted sector, T_{k>1})

Note: this structure has been obtained in the context of string-derived Pati-Salam models

Kobayashi, Raby, Zhang (2004)

This talk: discuss MSSM models with this structure

Buchmüller, Hamaguchi, Lebedev, M.R. (2005-2006) Lebedev, Nilles, Raby, Ramos-Sánchez, M.R., Vaudrevange, Wingerter (2006-2007) From strings to the MSSM

100 MSSMs

Model selection and 'statistics'

A Mini-Landscape of MSSM models

Lebedev, Nilles, Raby, Ramos-Sañchez, M.R., Vaudrevange, Wingerter (2006)

 $<\!\!\! < \!\!\! < \!\!\! <$ We construct 3×10^4 inequivalent models

A Mini-Landscape of MSSM models

Lebedev, Nilles, Raby, Ramos-Sañchez, M.R., Vaudrevange, Wingerter (2006)

- \sim We construct 3×10^4 inequivalent models
- ✓ Out of those 218 have the chiral MSSM spectrum with G_{SM} ⊂ SU(5) ⊂ SO(10) (such that hypercharge is in GUT normalization)

A Mini-Landscape of MSSM models

Lebedev, Nilles, Raby, Ramos-Sañchez, M.R., Vaudrevange, Wingerter (2006)

- \sim We construct 3×10^4 inequivalent models
- ✓ Out of those 218 have the chiral MSSM spectrum with G_{SM} ⊂ SU(5) ⊂ SO(10) (such that hypercharge is in GUT normalization)
- The models have vector-like exotics which can, however, get large masses

A Mini-Landscape of MSSM models

Lebedev, Nilles, Raby, Ramos-Sañchez, M.R., Vaudrevange, Wingerter (2006)

 \sim We construct 3×10^4 inequivalent models

- ✓ Out of those 218 have the chiral MSSM spectrum with G_{SM} ⊂ SU(5) ⊂ SO(10) (such that hypercharge is in GUT normalization)
- The models have vector-like exotics which can, however, get large masses

Strategy for the remainder of the talk:

Discuss one model in detail

^{(...}but please keep in mind that there are $\mathcal{O}(100)$ very similar models...)

A Mini-Landscape of MSSM models

Lebedev, Nilles, Raby, Ramos-Sañchez, M.R., Vaudrevange, Wingerter (2006)

 \sim We construct 3×10^4 inequivalent models

- ✓ Out of those 218 have the chiral MSSM spectrum with G_{SM} ⊂ SU(5) ⊂ SO(10) (such that hypercharge is in GUT normalization)
- The models have vector-like exotics which can, however, get large masses

Strategy for the remainder of the talk:

Discuss one model in detail

remark: if one abandons the requirement of a 2 + 1 family structure, one has a total of 10⁷ models but only $\mathcal{O}(100)$ additional MSSM candidates

^{(...}but please keep in mind that there are $\mathcal{O}(100)$ very similar models...)

A heterotic 'benchmark' model

From strings to the MSSM

A benchmark model

Model definition and spectrum

Model definition and spectrum

O. Lebedev, H.P. Nilles, S. Raby, S. Ramos-Sánchez, M.R., P. Vaudrevange, A. Wingerter (2007)

Input = geometry, shift & Wilson lines

From strings to the MSSM

A benchmark model

Model definition and spectrum

Model definition and spectrum

O. Lebedev, H.P. Nilles, S. Raby, S. Ramos-Sánchez, M.R., P. Vaudrevange, A. Wingerter (2007)

Input = geometry, shift & Wilson lines

🗢 Gauge group

 \subset SU(5) \subset SO(10)

 $G = [\overline{\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)_{Y}} \times \mathrm{U}(1)_{B-L}] \times [\mathrm{SU}(4) \times \mathrm{SU}(2)'] \times \mathrm{U}(1)^{7}$

A benchmark model

Model definition and spectrum

Model definition and spectrum

O. Lebedev, H.P. Nilles, S. Raby, S. Ramos-Sánchez, M.R., P. Vaudrevange, A. Wingerter (2007)

Input = geometry, shift & Wilson lines

🗢 Gauge group

 \subset SU(5) \subset SO(10)

 $\mathcal{G} = [\widetilde{\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)_{Y}} \times \mathrm{U}(1)_{B-L}] \times [\mathrm{SU}(4) \times \mathrm{SU}(2)'] \times \mathrm{U}(1)^{7}$

➡ Spectrum

spectrum = $3 \times \text{generation} + \text{vector-like w.r.t.} G_{\text{SM}} \times U(1)_{B-L}$

From strings to the MSSM

A benchmark model

Model definition and spectrum

Spectrum @ orbifold point

#	irrep	label	#	irrep	label
3	(3 , 2 ; 1 , 1) _(1/6,1/3)	q i	3	$(\overline{3},1;1,1)_{(-2/3,-1/3)}$	ū
3	$(1, 1; 1, 1)_{(1,1)}$	ēi	8	$(1,2;1,1)_{(0,*)}$	mi
3 + 1	$(\overline{3},1;1,1)_{(1/3,-1/3)}$	\bar{d}_i	1	$(3,1;1,1)_{(-1/3,1/3)}$	di
3 + 1	$(1, 2; 1, 1)_{(-1/2, -1)}$	ℓ_i	1	$(1, 2; 1, 1)_{(1/2, 1)}$	$\bar{\ell}_i$
1	$(1, 2; 1, 1)_{(-1/2,0)}$	h _d	1	$(1, 2; 1, 1)_{(1/2,0)}$	hu
6	$(\overline{3},1;1,1)_{(1/3,2/3)}$	$\overline{\delta}_i$	6	$(3,1;1,1)_{(-1/3,-2/3)}$	δ_i
14	$(1, 1; 1, 1)_{(1/2, *)}$	s_i^+	14	$(1, 1; 1, 1)_{(-1/2, *)}$	S_i^-
16	$(1,1;1,1)_{(0,1)}$	n,	13	$(1,1;1,1)_{(0,-1)}$	ni
5	$(1,1;1,2)_{(0,1)}$	$\bar{\eta}_i$	5	$(1, 1; 1, 2)_{(0, -1)}$	η_i
10	$(1,1;1,2)_{(0,0)}$	hi	2	$(1, 2; 1, 2)_{(0,0)}$	Y i
6	$(1, 1; 4, 1)_{(0,*)}$	f _i	6	$(1,1;\overline{4},1)_{(0,*)}$	<i>f</i> _i
2	$(1, 1; 4, 1)_{(-1/2, -1)}$	f_i^-	2	$(1, 1; \overline{4}, 1)_{(1/2, 1)}^{(1/2, 1)}$	\overline{f}_i^+
4	$(1, 1; 1, 1)_{(0,\pm 2)}$	χ_i	32	$(1, 1; 1, 1)_{(0,0)}$	S_i^0
2	$(\mathbf{\overline{3}},1;1,1)_{(-1/6,2/3)}$	\overline{V}_i	2	$(3,1;1,1)_{(1/6,-2/3)}$	Vi
A benchmark model

Model definition and spectrum

#	irrep	label		#	irrep	label			
3	(3 , 2 ; 1 , 1) _(1/6,1/3)	<i>q</i> i		3	$(\overline{3},1;1,1)_{(-2/3,-1/3)}$	ū			
3	$(1, 1; 1, 1)_{(1,1)}$	ēi		8	$(1, 2; 1, 1)_{(0,*)}$	mi			
<mark>3</mark> + 1	$(\overline{3},1;1,1)_{(1/3,-1/3)}$	\bar{d}_i		1	$(3,1;1,1)_{(-1/3,1/3)}$	di			
3 + 1	$(1, 2; 1, 1)_{(-1/2, -1)}$	ℓ_i		1	$(1, 2; 1, 1)_{(1/2, 1)}$	$\overline{\ell}_i$			
1	$(1, 2; 1, 1)_{(-1/2, 0)}$	h _d		1	$(1, 2; 1, 1)_{(1/2,0)}$	hu			
6	$(\overline{3},1;1,1)_{(1/3)2/3}$	$\overline{\delta}_i$		6	$(3,1;1,1)_{(-1/3,-2/3)}$	δ_i			
14	$(1, 1; 1, 1)_{(1/2, *)}$	s_i^+		14	$(1, 1; 1, 1)_{(-1/2, *)}$	s_i^-			
16	$(1,1;1,1)_{(0,1)}$	n _i		13	$(1, 1; 1, 1)_{(0, -1)}$	ni			
5	$(1,1;1,2)_{(0,1)}$	$ar\eta_i$		5	$(1, 1; 1, 2)_{(0, -1)}$	η_i			
10	spectrum = 3 generations + vector-like								
6									
2	$(1, 1; 4, 1)_{(-1/2, -1)}$	f_i^-		2	$(1,1;\overline{4},1)_{(1/2,1)}$	\overline{f}_i^+			
4	$(1, 1; 1, 1)_{(0, \pm 2)}$	χ_i		32	$(1, 1; 1, 1)_{(0,0)}$	s ⁰ _i			
2	$(\overline{3},1;1,1)_{(-1/6,2/3)}$	\overline{V}_i		2	$(3,1;1,1)_{(1/6,-2/3)}$	Vi			

A benchmark model

Model definition and spectrum

A benchmark model

Model definition and spectrum

A benchmark model

Model definition and spectrum

A benchmark model

Model definition and spectrum

#	irrep	label		#	irrep	label	
3	(3, 2; 1, 1) _(1/6,1/3)	q i		3	$(\overline{3},1;1,1)_{(-2/3,-1/3)}$	ū	
3	$(1, 1; 1, 1)_{(1,1)}$	ēi		8	$(1, 2; 1, 1)_{(0,*)}$	mi	
3 + 1	$(\overline{3},1;1,1)_{(1/3,-1/3)}$	\bar{d}_i		1	$(3,1;1,1)_{(-1/3,1/3)}$	di	
3 + 1	$(1, 2; 1, 1)_{(-1/2, -1)}$	ℓ_i		1	$(1, 2; 1, 1)_{(1/2, 1)}$	$\overline{\ell}_i$	
1	$(1, 2; 1, 1)_{(-1/2,0)}$	crucial	hu				
6	$(\overline{3},1;1,1)_{(1/3,2/3)}$	existence of SM singlets 1/3,-2/3)					
14	$(1, 1; 1, 1)_{(1/2,*)}$	with q_B	S_i^-				
16	$(1, 1; 1, 1)_{(0,1)}$	$\cdots \qquad (\cdots, \cdots, \cdots, \cdots, (0, -1))$					
5	$(1, 1; 1, 2)_{(0,1)}$	$ar\eta_i$		5	$(1, 1; 1, 2)_{(0, -1)}$	η_i	
10	$(1, 1; 1, 2)_{(0,0)}$	hi	/	2	$(1, 2; 1, 2)_{(0,0)}$	Yi	
6	$(1, 1; 4, 1)_{(0,*)}$	f _i		6	$(1,1;\overline{4},1)_{(0,*)}$	f _i	
2	$(1, 1; 4, 1)_{(-1/2, -1)}$	f_i^-		2	$(1, 1; \overline{4}, 1)_{(1/2, 1)}$	\overline{f}_i^+	
4	$(1, 1; 1, 1)_{(0, \pm 2)}$	χ_i		32	$(1, 1; 1, 1)_{(0,0)}$	S_i^0	
2	$(\overline{3},1;1,1)_{(-1/6,2/3)}$	\overline{V}_i		2	(3, 1; 1, 1) _(1/6,-2/3)	Vi	

A benchmark model

L Decoupling of exotics and μ term

Decoupling of exotics vs. μ term

Decoupling of exotics

Decoupling of exotics and μ term

Decoupling of exotics vs. μ term

Decoupling of exotics

We have checked that:

• exotics' mass matrices have full rank with

$$s_i = G_{SM} \times SU(4)$$
 singlets with $q_{B-L} = 0$ or ± 2

—Decoupling of exotics and μ term

Decoupling of exotics vs. μ term

Decoupling of exotics

We have checked that:

• exotics' mass matrices have full rank with

$$s_i = G_{SM} \times SU(4)$$
 singlets with $q_{B-L} = 0$ or ± 2

- $\boldsymbol{2}$ s_i vevs are consistent with supersymmetry
- Note that giving vevs to (localized) fields corresponds to blowing up the orbifold singularities

for recent work see e.g. Groot Nibbelink, Held, Ruehle, Trapletti, Vaudrevange

—Decoupling of exotics and μ term

Decoupling of exotics vs. μ term

Decoupling of exotics

We have checked that:

• exotics' mass matrices have full rank with

$$s_i = G_{SM} \times SU(4)$$
 singlets with $q_{B-L} = 0$ or ± 2

- \circ s_i vevs are consistent with supersymmetry
- → Have obtained an MSSM vacuum with *R*-parity

—Decoupling of exotics and μ term

Decoupling of exotics vs. μ term

Decoupling of exotics

We have checked that:

• exotics' mass matrices have full rank with

$$s_i = G_{SM} \times SU(4)$$
 singlets with $q_{B-L} = 0$ or ± 2

- $\boldsymbol{2}$ s_i vevs are consistent with supersymmetry
- → Have obtained an MSSM vacuum with *R*-parity

Questions:

- Is there a reason why the Higgs doublets' mass is much smaller than the exotics' masses?
- Is there a reason why the Higgs mass is of the order of the weak scale?

A stringy solution to the μ problem

 \sim The pair h_u - h_d are the only fields from U_3

- The pair h_u - h_d are the only fields from U_3
- $\ll h_u h_d$ is `neutral' w.r.t. to the selection rules

- The pair h_u - h_d are the only fields from U_3
- $\ll h_u h_d$ is `neutral' w.r.t. to the selection rules
- → As a consequence: for any monomial $\mathcal{M} = s_{i_1} \dots s_{i_N}$

 $\mathscr{M} h_u h_d \in \mathscr{W} \ \curvearrowright \ \mathscr{M} \in \mathscr{W}$

- The pair h_u - h_d are the only fields from U_3
- $\ll h_u h_d$ is `neutral' w.r.t. to the selection rules
- → As a consequence: for any monomial $\mathcal{M} = s_{i_1} \dots s_{i_N}$

 $\mathcal{M} \, h_u \, h_d \, \in \, \mathcal{W} \quad \curvearrowright \quad \mathcal{M} \, \in \, \mathcal{W}$

- We find that
 - $\mu \propto \langle \mathscr{W} \rangle$

- The pair h_u - h_d are the only fields from U_3
- $\ll h_u h_d$ is `neutral' w.r.t. to the selection rules
- As a consequence: for any monomial $\mathcal{M} = s_{i_1} \dots s_{i_N}$

 $\mathcal{M} h_u h_d \in \mathcal{W} \quad \curvearrowright \quad \mathcal{M} \in \mathcal{W}$

- We find that
 - $\mu \propto \langle \mathscr{W} \rangle$
- $<\!\!<$ question: why is $\langle \mathscr{W} \rangle$ small

Large hierarchies from approximate R symmetries

Kappl, Nilles, Ramos-Sánchez, M.R., Schmidt-Hoberg, Vaudrevange (2009)

We find that R symmetries allow us to control the superpotential

Large hierarchies from approximate R symmetries

Kappl, Nilles, Ramos-Sánchez, M.R., Schmidt-Hoberg, Vaudrevange (2009)

We find that R symmetries allow us to control the superpotential

approximate continuous R symmetries $\sim \langle \mathscr{W} \rangle \sim \langle s \rangle^N$

Large hierarchies from approximate R symmetries

Kappl, Nilles, Ramos-Sánchez, M.R., Schmidt-Hoberg, Vaudrevange (2009)

We find that R symmetries allow us to control the superpotential

approximate continuous R symmetries $\sim \langle \mathscr{W} \rangle \sim \langle s \rangle^N$

 ${}^{<\!\!\!<\!\!\!<\!\!\!<\!\!\!<\!\!\!\!<\!\!\!\!\!}$ In 'our' \mathbb{Z}_6 -II orbifold one has exact discrete R symmetries

e.g. Araki, Kobayashi, Kubo, Ramos-Sánchez, M.R., Vaudrevange (2008)

Large hierarchies from approximate R symmetries

Kappl, Nilles, Ramos-Sánchez, M.R., Schmidt-Hoberg, Vaudrevange (2009)

We find that R symmetries allow us to control the superpotential

approximate continuous R symmetries $\sim \langle \mathscr{W} \rangle \sim \langle s \rangle^N$

 ${}^{<\!\!\!<\!\!\!<\!\!\!<\!\!\!<\!\!\!\!<\!\!\!\!\!}$ In 'our' \mathbb{Z}_6 -II orbifold one has exact discrete R symmetries

e.g. Araki, Kobayashi, Kubo, Ramos-Sánchez, M.R., Vaudrevange (2008)

$$G_{\mathbf{R}} = [\mathbb{Z}_6 \times \mathbb{Z}_3 \times \mathbb{Z}_2]_{\mathbf{R}}$$

 Discrete symmetries imply approximate continuous symmetries

Large hierarchies from approximate R symmetries

Kappl, Nilles, Ramos-Sánchez, M.R., Schmidt-Hoberg, Vaudrevange (2009)

We find that R symmetries allow us to control the superpotential

approximate continuous R symmetries $\sim \langle \mathscr{W} \rangle \sim \langle s \rangle^N$

 ${}^{<\!\!\!<\!\!\!<\!\!\!<\!\!\!<\!\!\!\!<\!\!\!\!\!}$ In 'our' \mathbb{Z}_6 -II orbifold one has exact discrete R symmetries

e.g. Araki, Kobayashi, Kubo, Ramos-Sánchez, M.R., Vaudrevange (2008)

 $G_{\mathbf{R}} = [\mathbb{Z}_6 \times \mathbb{Z}_3 \times \mathbb{Z}_2]_{\mathbf{R}}$

- Discrete symmetries imply approximate continuous symmetries
- In the `vacuum' discussed so far one obtains

$$\mu \simeq \langle \mathscr{W} \rangle \sim \langle s \rangle^9 \simeq m_{3/2}$$

Stringy solutions to the μ problem - literature

There exist proposals for precisely this situation

Stringy solutions to the μ problem - literature

- There exist proposals for precisely this situation
- 1 μ from \mathscr{W}

Casas, Muñoz (1993)

A benchmark model

Stringy solutions to the μ problem - literature

- There exist proposals for precisely this situation
- 1 μ from \mathscr{W}

 2μ from K

Casas, Muñoz (1993)

Antoniadis, Gava, Narain, Taylor (1994) Brignole, Ibáñez, Muñoz (1995-1997)

$$K \supset -\log\left[\left(T_3 + \overline{T_3}\right)\left(Z_3 + \overline{Z_3}\right) - \left(h_u + \overline{h_d}\right)\left(\overline{h_u} + h_d\right)\right]$$

Kähler modulus
Complex structure modulus

... leads effectively to the Giudice-Masiero mechanism

Giudice, Masiero (1988) cf. talk by A. Hebecker

A benchmark model

Stringy solutions to the μ problem - literature

- There exist proposals for precisely this situation
- 1 μ from \mathscr{W}

Casas, Muñoz (1993)

 ${\bf 2} \ \mu$ from K

Antoniadis, Gava, Narain, Taylor (1994) Brignole, Ibáñez, Muñoz (1995-1997)

Model allows to use both mechanisms (simultaneously)

 \curvearrowright expect $\mu \sim m_{3/2}$

A benchmark model

Stringy solutions to the μ problem - literature

- There exist proposals for precisely this situation
- 1 μ from \mathscr{W}

Casas, Muñoz (1993)

 ${\bf 2} \ \mu$ from K

Antoniadis, Gava, Narain, Taylor (1994) Brignole, Ibáñez, Muñoz (1995-1997)

- Model allows to use both mechanisms (simultaneously)
 - \sim expect $\mu \sim m_{3/2}$
- Combination' of both mechanisms appears phenomenologically viable

for related work see talk by S. Kraml

A benchmark model

Stringy solutions to the μ problem - literature

- There exist proposals for precisely this situation
- 1 μ from \mathscr{W}

 2μ from K

Casas, Muñoz (1993)

Model allows to use both mechanisms (simultaneously)

 \sim expect $\mu \sim m_{3/2}$

 Combination' of both mechanisms appears phenomenologically viable

for related work see talk by S. Kraml

Antoniadis, Gava, Narain, Taylor (1994) Brianole, Ibáñez, Muñoz (1995-1997)

note: there are attractive alternative (though related) explanations of a suppressed µ term

> Buchmüller, Lüdeling, Schmidt (2007) Buchmüller, Schmidt (2008)

A benchmark model

-Gauge-top unification

Gauge-top unification (GTU)

Untwisted sector (=internal components of the gauge bosons)

A benchmark model

Gauge-top unification

GTU in more detail

GTU in more detail

Focus on 6D orbifold GUT limit

 \sim For $R_5 \gg R_6$ this is similar to a model by Burdman & Nomura

GTU in more detail

- Focus on 6D orbifold GUT limit
- ${}^{\sim}$ For $R_5 \gg R_6$ this is similar to a model by Burdman & Nomura
- The second seco

GTU in more detail

- Focus on 6D orbifold GUT limit
- ${}^{\sim}$ For $R_5 \gg R_6$ this is similar to a model by Burdman & Nomura
- The Because of localized Fayet-Iliopoulos terms at the fixed points the components φ and φ^c of the bulk hypermultiplet, containing q_3 and \bar{u}_3 , attain non-trivial profiles
- This leads to a suppression of y_t at the compactification scale
 Hosteins, Kappl, M.R., Schmidt-Hoberg (2009)

A benchmark model

Top-down motivation for orbifold GUTs

$\Rightarrow y_t$ correlated with tan β

A benchmark model

Top-down motivation for orbifold GUTs

- $\Rightarrow y_t$ correlated with tan β
- Reasonable values for tan β seem to require rather anisotropic compactifications

Hosteins, Kappl, M.R., Schmidt-Hoberg (2009)

Top-down motivation for orbifold GUTs

- $\Rightarrow y_t$ correlated with tan β
- Reasonable values for tan β seem to require rather anisotropic compactifications
 Hosteins, Kappel, M.R., Schmidt-Hoberg (2009)
- Highly anisotropic compactifications allow us to resolve the discrepancy between GUT and string scales

Witten (1996)

$$R_5 \simeq rac{1}{M_{
m GUT}} \ \ {
m and} \ \ R_{\geq 6} \ \sim \ rac{1}{M_{
m string}} \ \simeq \ rac{1}{8.6 \cdot 10^{17} \, {
m GeV}}$$

 Orbifold GUT limit appears to yield valid intermediate description

Hebecker, Trapletti (2004)

Comments on the structure of soft masses

- Two families reside on two equivalent orbifold fixed points
- This leads to a discrete D₄ flavor symmetry under which the first two generations transform as a doublet

Kobayashi, Raby, Zhang (2004) Kobayashi, Nilles, Plôger, Raby, M.R. (2006)

for other interesting applications of non-Abelian discrete flavor symmetries see talk by C. Hagedorn

 Note: anomalies of non-Abelian discrete symmetries cancel in string-derived models

Araki, Kobayashi, Kubo, Ramos-Sánchez, M.R., Vaudrevange (2008)
From strings to the MSSM

Comments on the structure of soft masses

- Two families reside on two equivalent orbifold fixed points
- This leads to a discrete D₄ flavor symmetry under which the first two generations transform as a doublet
- At this level, the structure of the soft mass terms is

$$\widetilde{m}^2 = \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{pmatrix}$$

Ko, Kobayashi, Park, Raby (2007)

From strings to the MSSM

Comments on the structure of soft masses

- Two families reside on two equivalent orbifold fixed points
- This leads to a discrete D₄ flavor symmetry under which the first two generations transform as a doublet
- At this level, the structure of the soft mass terms is

$$\widetilde{m}^2 = \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{pmatrix}$$

 $<\!\!\! <$ The singlet VEVs $\langle s_i \rangle$ that generate the Yukawa coupling also break D_4

Comments on the structure of soft masses

- Two families reside on two equivalent orbifold fixed points
- This leads to a discrete D₄ flavor symmetry under which the first two generations transform as a doublet
- At this level, the structure of the soft mass terms is

$$\widetilde{m}^2 = \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{pmatrix}$$

- $<\!\!\!\! <$ The singlet VEVs $\langle s_i \rangle$ that generate the Yukawa coupling also break D_4
- ➡ MFV-like structure of soft masses

 $\widetilde{m}^2 \sim \alpha \mathbb{1} + \beta Y^{\dagger} Y$

MFV = Minimal Flavor Violation

From strings to the MSSM

A benchmark model

Flavor structure

Example: soft masses of squark doublets

Paradisi, M.R., Schieren, Simonetto (2008) Colangelo, Nikolidakis, Smith (2008) cf. talk by C. Smith

 \sim Ansatz (@ M_{GUT}):

 $\widetilde{m}_Q^2 = \alpha_1 \mathbb{1} + \beta_1 Y_u^{\dagger} Y_u + \beta_2 Y_d^{\dagger} Y_d + (\beta_3 Y_d^{\dagger} Y_d Y_u^{\dagger} Y_u + \text{h.c.})$

Example: soft masses of squark doublets

Paradisi, M.R., Schieren, Simonetto (2008) Colangelo, Nikolidakis, Smith (2008) cf. talk by C. Smith

 \sim Ansatz (@ M_{GUT}):

 $\widetilde{m}_Q^2 = \alpha_1 \mathbb{1} + \beta_1 Y_u^{\dagger} Y_u + \beta_2 Y_d^{\dagger} Y_d + (\beta_3 Y_d^{\dagger} Y_d Y_u^{\dagger} Y_u + \text{h.c.})$

 $<\!\!\!\!>$ The form of $\widetilde{m}_{\rm Q}^2$ is RG invariant, only the coefficients α_i & β_i run

Flavor structure

Example: Running of β_1

"SPS + MFV"

Flavor structure

Example: Running of β_1

"SPS + MFV"

 $\beta_i = \beta_0 @ M_{\text{GUT}}$ $\alpha_i = m_0^2 @ M_{\text{GUT}}$

Flavor structure

Example: Running of β_1

"SPS + MFV"

 $\beta_i = \beta_0 @ M_{\text{GUT}}$ $\alpha_i = m_0^2 @ M_{\text{GUT}}$

-Flavor structure

Example: Running of β_1

 $\beta_i =$

 $\alpha_i =$

- SUSY flavor problem(s) may be
- avoided/ameliorated because of stringy D_4 flavor symmetry
- Deviation of \widetilde{m}^2 from unit matrices at $M_{\rm GUT}$ might not even be measurable at low energies

From strings to the MSSM

Summary LSearch strategy

Summary of search strategy

We explore possibilities of getting the MSSM from strings

Summary _____Search strategy

Summary of search strategy

We explore possibilities of getting the MSSM from strings

The concept of 'local grand unification' has led us to beautiful spots

Summary

Summary of features

 $1 3 \times 16 + \text{Higgs} + \text{nothing}$

Summary <u>Main</u> results

Summary of features

1 $3 \times 16 + \text{Higgs} + \text{nothing}$

2 $SU(3) \times SU(2) \times U(1)_{Y} \times G_{hid}$

Main results

- $1 3 \times 16 + Higgs + nothing$
- 2 $SU(3) \times SU(2) \times U(1)_{Y} \times G_{hid}$
- **3** unification

Summary

- $1 3 \times 16 + \text{Higgs} + \text{nothing}$
- 2 $SU(3) \times SU(2) \times U(1)_Y \times G_{hid}$
- 3 unification
- *R*-parity
 ... but potential problems with dimension 5 proton decay

Summary of features

- $1 3 \times 16 + \text{Higgs} + \text{nothing}$
- 2 $SU(3) \times SU(2) \times U(1)_{Y} \times G_{hid}$
- 3 unification
- 4 *R*-parity
- **5** solution to the μ -problem

i.e. well-known solutions to the $\mu\text{-problem}$ are automatically

realized in explicit models

 $\mu \sim \langle \mathscr{W} \rangle$ $\langle \mathscr{W} \rangle \ll 1$ from approximate $U(1)_R$ symmetries

- $1 3 \times 16 + \text{Higgs} + \text{nothing}$
- 2 $SU(3) \times SU(2) \times U(1)_{Y} \times G_{hid}$
- 3 unification
- 4 *R*-parity
- **5** solution to the μ -problem
- Gauge-top unification: y_t ≤ g
 @ M_{GUT}, y_t/g related to geometry (anisotropy) & potentially realistic flavor structures à la Froggatt-Nielsen

Summary

- $1 3 \times 16 + \text{Higgs} + \text{nothing}$
- 2 $SU(3) \times SU(2) \times U(1)_{Y} \times G_{hid}$
- 3 unification
- 4 *R*-parity
- **5** solution to the μ -problem
- 6 gauge-top unification
- Non-Abelian discrete flavor symmetries relaxing/solving the supersymmetric flavor problems

Summary

- $1 3 \times 16 + \text{Higgs} + \text{nothing}$
- 2 $SU(3) \times SU(2) \times U(1)_{Y} \times G_{hid}$
- 3 unification
- 4 R-parity
- **(** \mathbf{b} solution to the μ -problem
- 6 gauge-top unification
- Non-Abelian discrete flavor symmetries

Main results

- $1 3 \times 16 + \text{Higgs} + \text{nothing}$
- 2 $SU(3) \times SU(2) \times U(1)_{Y} \times G_{hid}$
- 3 unification
- 4 R-parity
- **5** solution to the μ -problem
- 6 gauge-top unification
- Non-Abelian discrete flavor symmetries
- 8 see-saw
-) 'realistic' hidden sector

Summary of features

- $1 3 \times 16 + \text{Higgs} + \text{nothing}$
- 2 $SU(3) \times SU(2) \times U(1)_{Y} \times G_{hid}$
- 3 unification
- 4 R-parity
- **5** solution to the μ -problem
- 6 gauge-top unification
- Non-Abelian discrete flavor symmetries
- 8 see-saw

) `realistic' hidden sector

that's what we searched for...

... that's what we got `for free'

"stringy surprises"

"Appendix"

See-saw couplings

 \ll see-saw couplings: $W_{\text{see-saw}} = Y_{\nu}^{ij} h_{u} \ell_{i} \bar{\nu}_{j} + M_{ij} \bar{\nu}_{i} \bar{\nu}_{j}$

See-saw couplings

- \ll see-saw couplings: $W_{\text{see-saw}} = Y_{\nu}^{ij} h_{\mu} \ell_{i} \bar{\nu}_{j} + M_{ij} \bar{\nu}_{i} \bar{\nu}_{j}$
- \ll in string models $M, Y_{\nu} \sim \langle s^n \rangle$ singlet

See-saw couplings

- \ll see-saw couplings: $W_{\text{see-saw}} = Y_{\nu}^{ij} h_{\mu} \ell_{i} \bar{\nu}_{j} + M_{ij} \bar{\nu}_{i} \bar{\nu}_{j}$
- \sim in string models $M, Y_{\nu} \sim \langle s^n \rangle$
- 🗢 see-saw mass matrix

$$W_{\text{see-saw}} \xrightarrow{h_{\nu} \to \nu} (\nu, \bar{\nu}) \begin{pmatrix} 0 & y_{\nu} v \\ y_{\nu} v & M \end{pmatrix} \begin{pmatrix} \nu \\ \bar{\nu} \end{pmatrix} \simeq \frac{y_{\nu}^2 v^2}{M} \nu \nu + M \bar{\nu} \bar{\nu}$$

See-saw couplings

- \ll see-saw couplings: $W_{\text{see-saw}} = Y_{\nu}^{ij} h_{u} \ell_{i} \bar{\nu}_{j} + M_{ij} \bar{\nu}_{i} \bar{\nu}_{j}$
- < in string models $M, Y_{\nu} \sim \langle s^n \rangle$
- ➡ see-saw mass matrix

$$W_{\rm see-saw} \xrightarrow{h_u \to \nu} (\nu, \bar{\nu}) \begin{pmatrix} 0 & y_\nu \, \nu \\ y_\nu \, \nu & M \end{pmatrix} \begin{pmatrix} \nu \\ \bar{\nu} \end{pmatrix} \simeq \frac{y_\nu^2 \, \nu^2}{M} \, \nu \, \nu + M \, \bar{\nu} \, \bar{\nu}$$

→ naive GUT expectation: $m_{\nu} \sim (100 \,\mathrm{GeV})^2 / 10^{16} \,\mathrm{GeV} \sim 10^{-3} \,\mathrm{eV}$

► Summary

See-saw couplings

- \ll see-saw couplings: $W_{\text{see-saw}} = Y_{\nu}^{ij} h_u \ell_i \bar{\nu}_j + M_{ij} \bar{\nu}_i \bar{\nu}_j$
- $<\!\!>$ in string models $M, Y_{\nu} \sim \langle s^n \rangle$
- ➡ see-saw mass matrix

$$W_{\rm see-saw} \xrightarrow{h_{u} \to v} (\nu, \bar{\nu}) \begin{pmatrix} 0 & y_{\nu} v \\ y_{\nu} v & M \end{pmatrix} \begin{pmatrix} \nu \\ \bar{\nu} \end{pmatrix} \simeq \frac{y_{\nu}^{2} v^{2}}{M} \nu \nu + M \bar{\nu} \bar{\nu}$$

→ naive GUT expectation:

$$m_{\nu} \sim (100 \,\mathrm{GeV})^2 / 10^{16} \,\mathrm{GeV} \sim 10^{-3} \,\mathrm{eV}$$

... suspiciously close to observed values

$$\sqrt{\Delta m^2_{
m atm}}~\simeq~0.04\,{
m eV}$$
 & $\sqrt{\Delta m^2_{
m sol}}\simeq 0.008\,{
m eV}$

-See-saw couplings

Heterotic see-saw

Summary

W. Buchmüller, K. Hamaguchi, O. Lebedev, M.R. (2006) W. Buchmüller, K. Hamaguchi, O. Lebedev, S. Ramos-Sánchez, M.R. (2007)

O. Lebedev, H.P. Nilles, S. Raby, S. Ramos-Sánchez, M.R., P. Vaudrevange, A. Wingerter (2007)

\sim there are $\mathcal{O}(100)$ neutrinos (= *R*-parity odd SM singlets)

Summary

W. Buchmüller, K. Hamaguchi, O. Lebedev, M.R. (2006) W. Buchmüller, K. Hamaguchi, O. Lebedev, S. Ramos-Sánchez, M.R. (2007) O. Lebedev, H.P. Nilles, S. Raby, S. Ramos-Sánchez, M.R., P. Vaudrevange, A. Wingerter (2007)

 \ll there are $\mathcal{O}(100)$ neutrinos (= *R*-parity odd SM singlets)

 $\rightarrow O(100)$ contributions to the (effective) neutrino mass operator

Summary

W. Buchmüller, K. Hamaguchi, O. Lebedev, M.R. (2006) W. Buchmüller, K. Hamaguchi, O. Lebedev, S. Ramos-Sánchez, M.R. (2007) O. Lebedev, H.P. Nilles, S. Raby, S. Ramos-Sánchez, M.R., P. Vaudrevange, A. Wingerter (2007)

 \sim there are $\mathcal{O}(100)$ neutrinos (= *R*-parity odd SM singlets)

 $\rightarrow O(100)$ contributions to the (effective) neutrino mass operator

effective suppression of the see-saw scale

Summary

W. Buchmüller, K. Hamaguchi, O. Lebedev, M.R. (2006) W. Buchmüller, K. Hamaguchi, O. Lebedev, S. Ramos-Sánchez, M.R. (2007) O. Lebedev, H.P. Nilles, S. Raby, S. Ramos-Sánchez, M.R., P. Vaudrevange, A. Wingerter (2007)

 \sim there are $\mathcal{O}(100)$ neutrinos (= *R*-parity odd SM singlets)

 $\rightarrow O(100)$ contributions to the (effective) neutrino mass operator

effective suppression of the see-saw scale

$$\int \left(\sqrt{\Delta m_{\rm atm}^2} \simeq 0.04 \, {\rm eV} \, \& \, \sqrt{\Delta m_{\rm sol}^2} \simeq 0.008 \, {\rm eV} \right)$$

Main conclusion:

See-saw is a generic feature in heterotic MSSM vacua

Summary

W. Buchmüller, K. Hamaguchi, O. Lebedev, M.R. (2006) W. Buchmüller, K. Hamaguchi, O. Lebedev, S. Ramos-Sánchez, M.R. (2007) O. Lebedev, H.P. Nilles, S. Raby, S. Ramos-Sánchez, M.R., P. Vaudrevange, A. Wingerter (2007)

 \sim there are $\mathcal{O}(100)$ neutrinos (= *R*-parity odd SM singlets)

→ $\mathcal{O}(100)$ contributions to the (effective) neutrino mass operator

effective suppression of the see-saw scale

$$\int \left(\sqrt{\Delta m_{\rm atm}^2} \simeq 0.04 \, {\rm eV} \, \& \, \sqrt{\Delta m_{\rm sol}^2} \simeq 0.008 \, {\rm eV} \right)$$

Main conclusion:

See-saw is a generic feature in heterotic MSSM vacua

 ${\mathscr T}$ Note: in ${\mathbb Z}_3$ orbifolds one arrives at a different conclusion

cf. Giedt, Kane, Langacker, Nelson (2005)

"Appendix"

Large hierarchies from approximate *R* symmetries

Why is $\langle \mathscr{W} \rangle$ small?

Summary

Kappl, Nilles, Ramos-Sánchez, M.R., Schmidt-Hoberg, Vaudrevange (2008)

Two ingredients:

Large hierarchies from approximate *R* symmetries

Why is $\langle \mathscr{W} \rangle$ small?

Summary

Kappl, Nilles, Ramos-Sánchez, M.R., Schmidt-Hoberg, Vaudrevange (2008)

"Appendix"

Large hierarchies from approximate *R* symmetries

$\langle \mathscr{W} \rangle = 0$ because of $\mathrm{U}(1)_R$ (I)

Kappl, Nilles, Ramos-Sánchez, M.R., Schmidt-Hoberg, Vaudrevange (2008)

where each monomial in \mathcal{W} has total R-charge 2.
Large hierarchies from approximate *R* symmetries

$\langle \mathscr{W} \rangle = 0$ because of $U(1)_R$ (II)

Kappl, Nilles, Ramos-Sánchez, M.R., Schmidt-Hoberg, Vaudrevange (2008)

Consider a field configuration $\langle \phi_i \rangle$ with

$$F_i = rac{\partial \mathscr{W}}{\partial \phi_i} = 0 \quad \mathrm{at} \ \phi_j = \langle \phi_j \rangle$$

Under an infinitesimal $U(1)_{\ensuremath{\mathcal{R}}}$ transformation, the superpotential transforms nontrivially

$$\mathscr{W}(\phi_j) \to \mathscr{W}(\phi'_j) = \mathscr{W}(\phi_j) + \sum_i \frac{\partial \mathscr{W}}{\partial \phi_i} \Delta \phi_i$$

Large hierarchies from approximate *R* symmetries

$\langle \mathscr{W} \rangle = 0$ because of $U(1)_R$ (II)

Kappl, Nilles, Ramos-Sánchez, M.R., Schmidt-Hoberg, Vaudrevange (2008)

Consider a field configuration $\langle \phi_i \rangle$ with

$$F_i = rac{\partial \mathscr{W}}{\partial \phi_i} = 0 \quad \mathrm{at} \ \phi_j = \langle \phi_j \rangle$$

Under an infinitesimal $U(1)_{\ensuremath{\mathcal{R}}}$ transformation, the superpotential transforms nontrivially

$$\mathscr{W}(\phi_j) \to \mathscr{W}(\phi'_j) = \mathscr{W}(\phi_j) + \sum_i \overset{\otimes \mathscr{W}}{\not \to \phi_i} \Delta \phi_i$$

Large hierarchies from approximate *R* symmetries

$\langle \mathscr{W} \rangle = 0$ because of $U(1)_R$ (II)

Kappl, Nilles, Ramos-Sánchez, M.R., Schmidt-Hoberg, Vaudrevange (2008)

Consider a field configuration $\langle \phi_i \rangle$ with

$$F_i = rac{\partial \mathscr{W}}{\partial \phi_i} = 0 \quad \mathrm{at} \ \phi_j = \langle \phi_j \rangle$$

Under an infinitesimal $U(1)_{\ensuremath{\mathcal{R}}}$ transformation, the superpotential transforms nontrivially

$$\mathscr{W}(\phi_j) \rightarrow \mathscr{W}(\phi'_j) = \mathscr{W}(\phi_j) + \sum_i \overset{\mathfrak{A}''_{ij}}{\mathscr{P} \phi_i} \Delta \phi_i \stackrel{!}{=} \mathbf{e}^{2\mathbf{i}\,\alpha} \, \mathscr{W}$$

This is only possible if $\langle \mathscr{W} \rangle = 0!$

bottom-line:

Large hierarchies from approximate *R* symmetries

Comments

Large hierarchies from approximate R symmetries

Comments

Relation to Nelson-Seiberg theorem

setting without supersymmetric ground state

Nelson & Seiberg (1994)

 $U(1)_R$ symmetry

Comments

Comments

Relation to Nelson-Seiberg theorem
$$\begin{cases} \text{setting without} \\ \text{supersymmetric} \\ \text{ground state} \end{cases}$$
 $\xrightarrow{\text{requires}}_{\text{does not imply}}$ $U(1)_R$ symmetry

2 in local SUSY :
$$\frac{\partial \mathscr{W}}{\partial \phi_i} = 0$$
 and $\langle \mathscr{W} \rangle = 0$ imply $D_i \mathscr{W} = 0$
(That is, a U(1)_R symmetry implies Minkowski solutions.)

- 3 for a continuous $U(1)_R$ symmetry we would have
 - a supersymmetric ground state with $\mathscr{W} = 0$ and $U(1)_{\mathcal{R}}$ spontaneously broken
 - a problematic *R*-Goldstone boson

Comments

Relation to Nelson-Seiberg theorem
$$\left\{\begin{array}{c} \text{setting without} \\ \text{supersymmetric} \\ \text{ground state} \end{array}\right\} \xrightarrow[\text{does not imply}]{} U(1)_{\mathcal{R}} \text{ symmetry}$$

2 in local SUSY :
$$\frac{\partial \mathscr{W}}{\partial \phi_i} = 0$$
 and $\langle \mathscr{W} \rangle = 0$ imply $D_i \mathscr{W} = 0$
(That is, a U(1)_R symmetry implies Minkowski solutions.)

(3) for a continuous $U(1)_R$ symmetry we would have

- a supersymmetric ground state with $\mathscr{W} = 0$ and $U(1)_{\mathcal{R}}$ spontaneously broken
- a problematic *R*-Goldstone boson

However, the above $U(1)_R$ -symmetry appears as an accidental continous symmetry resulting from an exact discrete symmetry of (high) order N; hence

- Goldstone-Boson massive and harmless
- a nontrivial VEV of ${\mathscr W}$ of higher order in ϕ

Large hierarchies from approximate *R* symmetries

Origin of high-power discrete *R*-symmetries

Large hierarchies from approximate *R* symmetries

Origin of high-power discrete *R*-symmetries

- Orbifold breaks $SO(6) \simeq SU(4)$ Lorentz symmetry of compact space to discrete subgroup
- ${} \gg$ Specifically, in 'our' \mathbb{Z}_6 -II orbifold one has

$$G_{R} \;=\; [\mathbb{Z}_{6} \times \mathbb{Z}_{3} \times \mathbb{Z}_{2}]_{R}$$

Large hierarchies from approximate *R* symmetries

Application: moduli stabilization

There exist various possibilities to fix the gauge coupling/stabilize the dilaton:

-Large hierarchies from approximate *R* symmetries

Application: moduli stabilization

There exist various possibilities to fix the gauge coupling/stabilize the dilaton:

-Large hierarchies from approximate *R* symmetries

Application: moduli stabilization

There exist various possibilities to fix the gauge coupling/stabilize the dilaton:

- Race-track
- Kähler stabilization

Casas (1996)

Binétruy, Gaillard & Wu (1996)

-Large hierarchies from approximate *R* symmetries

Application: moduli stabilization

There exist various possibilities to fix the gauge coupling/stabilize the dilaton:

- Race-track
- Kähler stabilization
- Flux compactification

e.g. Kachru, Kallosh, Linde & Trivedi (2003)

-Large hierarchies from approximate *R* symmetries

Application: moduli stabilization

There exist various possibilities to fix the gauge coupling/stabilize the dilaton:

- Race-track
- Kähler stabilization
- Flux compactification
- etc....

Large hierarchies from approximate *R* symmetries

Large hierarchies from approximate *R* symmetries

- KKLT type proposal
 - $\mathcal{W}_{\rm eff} = C + A e^{-\alpha S}$
- Gravitino mass
 - $m_{3/2} \sim |c|$

Large hierarchies from approximate R symmetries

- KKLT type proposal
 - $\mathcal{W}_{\rm eff} = C + A e^{-\alpha S}$
- Gravitino mass

$$m_{3/2} \sim |c| \xrightarrow{m_{3/2} \stackrel{!}{\simeq} \text{TeV}} |c| \sim 10^{-15}$$

Constant + exponential scheme

- KKLT type proposal
 - $\mathscr{W}_{\text{eff}} = C + A e^{-\alpha S}$
- Gravitino mass

$$m_{3/2} \sim |c| \xrightarrow{m_{3/2} \stackrel{!}{\simeq} \text{TeV}} |c| \sim 10^{-15}$$

Philosophy of flux compactifications: many vacua, in some of them c might be small by accident

- KKLT type proposal
 - $\mathscr{W}_{\text{eff}} = C + A e^{-aS}$
- Gravitino mass

$$m_{3/2} \sim |c| \xrightarrow{m_{3/2} \stackrel{!}{\simeq} \text{TeV}} |c| \sim 10^{-15}$$

- Philosophy of flux compactifications: many vacua, in some of them c might be small by accident
- Our proposal: small expectation of the perturbative superpotential due to approximate U(1)_R symmetry

Large hierarchies from approximate R symmetries

Embedding into the MiniLandscape

We analyzed a couple of models

Embedding into the MiniLandscape

- We analyzed a couple of models
- $<\!\!\!>$ We find $\langle \mathscr{W}_{pert} \rangle \sim \langle s \rangle^N$ with $N = 9 \dots 26$

Embedding into the MiniLandscape

- We analyzed a couple of models
- $<\!\!\!>$ We find $\langle \mathscr{W}_{pert} \rangle \sim \langle s \rangle^N$ with $N = 9 \dots 26$
- $<\!\!\! < \!\!\! < \!\!\! < \!\!\! < \!\!\! >$ Assuming that the FI term sets the scale of the $\sim \langle s \rangle$ this leads to

$$\langle \mathscr{W} \rangle ~\sim ~ \langle \mathscr{W}_{\rm pert} \rangle ~\sim ~ 10^{-\mathcal{O}(10)}$$

Embedding into the MiniLandscape

- We analyzed a couple of models
- \ll We find $\langle \mathscr{W}_{pert} \rangle \sim \langle s \rangle^N$ with $N = 9 \dots 26$
- $<\!\!\! < \!\!\! <$ Assuming that the FI term sets the scale of the $\sim \langle s \rangle$ this leads to

$$\langle \mathscr{W} \rangle ~\sim ~ \langle \mathscr{W}_{\text{pert}} \rangle ~\sim ~ 10^{-\mathcal{O}(10)}$$

ote: the solutions of *F*-term equations are points in field space (no moduli in s_i-space)

Embedding into the MiniLandscape

- We analyzed a couple of models
- $<\!\!>$ We find $\langle \mathscr{W}_{pert} \rangle \sim \langle s \rangle^N$ with $N = 9 \dots 26$
- $<\!\!\! < \!\!\! <$ Assuming that the FI term sets the scale of the $\sim \langle s \rangle$ this leads to

$$\langle \mathscr{W} \rangle ~\sim ~ \langle \mathscr{W}_{\text{pert}} \rangle ~\sim ~ 10^{-\mathcal{O}(10)}$$

- ote: the solutions of *F*-term equations are points in field space (no moduli in s_i-space)
- application: this
 - generates a suppressed μ term

 $\mu \sim \langle \mathscr{W} \rangle \sim m_{3/2}$

• fixes the gauge coupling / dilaton

Embedding into the MiniLandscape

- We analyzed a couple of models
- $<\!\!\!>$ We find $\langle \mathscr{W}_{pert} \rangle \sim \langle s \rangle^N$ with $N = 9 \dots 26$
- $<\!\!\! < \!\!\! <$ Assuming that the FI term sets the scale of the $\sim \langle s \rangle$ this leads to

$$\langle \mathscr{W} \rangle \sim \langle \mathscr{W}_{\text{pert}} \rangle \sim 10^{-\mathcal{O}(10)}$$

- ote: the solutions of *F*-term equations are points in field space (no moduli in s_i-space)
- ➡ application: this
 - generates a suppressed μ term

 $\mu \sim \langle \mathscr{W} \rangle \sim m_{3/2}$

- fixes the gauge coupling / dilaton
- question: is the dilaton fixed at realistic values?

Hidden sector strong dynamics

 $<\!\!\! < \!\!\! < \!\!\! < \!\!\! < \!\!\!$ Relation between $m_{3/2} \ll M_P$ and the scale of hidden sector strong dynamics

$$G \;=\; G_{SM} \times {\textstyle {\textstyle G_4}}$$

Hidden sector strong dynamics

- $<\!\!\! < \!\!\! < \!\!\! < \!\!\! < \!\!\!$ Relation between $m_{3/2} \ll M_P$ and the scale of hidden sector strong dynamics
- We estimate the scale of hidden sector strong dynamics (i.e. calculate the β-

function)

Properties of the hidden sector

 Distribution of the (naive) scale of hidden sector strong dynamics

Properties of the hidden sector

 Distribution of the (naive) scale of hidden sector strong dynamics

Properties of the hidden sector

 Distribution of the (naive) scale of hidden sector strong dynamics

Note: hidden sector usually stronger coupled

Properties of the hidden sector

 Distribution of the (naive) scale of hidden sector strong dynamics

Note: hidden sector usually stronger coupled

Yukawa structure

Yukawa couplings in the configuration discussed so far up to s⁶

$$Y_{u} = \begin{pmatrix} s^{5} & s^{5} & s^{5} \\ s^{5} & s^{5} & s^{6} \\ s^{6} & s^{6} & \mathcal{O}(g) \end{pmatrix}, Y_{d} = \begin{pmatrix} 0 & 0 & s^{5} \\ 0 & s^{5} & 0 \\ 0 & 0 & s^{6} \end{pmatrix}, Y_{e} = \begin{pmatrix} s^{6} & s^{6} & 0 \\ 0 & s^{5} & s^{6} \\ s^{5} & 0 & 0 \end{pmatrix}$$

each *s* entry represents a monomial of singlets with the indicated order

Yukawa structure

Yukawa couplings in the configuration discussed so far up to s⁶

$$Y_{u} = \begin{pmatrix} s^{5} & s^{5} & s^{5} \\ s^{5} & s^{5} & s^{6} \\ s^{6} & s^{6} & \mathcal{O}(g) \end{pmatrix}, \quad Y_{d} = \begin{pmatrix} 0 & 0 & s^{5} \\ 0 & s^{5} & 0 \\ 0 & 0 & s^{6} \end{pmatrix}, \quad Y_{e} = \begin{pmatrix} s^{6} & s^{6} & 0 \\ 0 & s^{5} & s^{6} \\ s^{5} & 0 & 0 \end{pmatrix}$$

We find many other configurations with the same characteristics ($\mu \sim m_{3/2}$, all exotics decouple, etc.) but different Yukawa couplings

$$Y_{u} = \begin{pmatrix} s^{5} & s^{5} & s^{5} \\ s^{5} & s^{5} & s^{5} \\ s^{6} & s^{6} & \mathcal{O}(g) \end{pmatrix}, \quad Y_{d} = \begin{pmatrix} 0 & s^{5} & s^{5} \\ 0 & s^{5} & s^{5} \\ 0 & s^{6} & s^{6} \end{pmatrix}, \quad Y_{e} = \begin{pmatrix} s^{6} & s^{6} & 0 \\ s^{5} & s^{5} & s^{6} \\ s^{5} & s^{5} & s^{6} \end{pmatrix}$$

 Effective Yukawa couplings are vacuum/moduli dependent

Yukawa structure

Yukawa couplings in the configuration discussed so far up to s⁶

$$Y_{u} = \begin{pmatrix} s^{5} & s^{5} & s^{5} \\ s^{5} & s^{5} & s^{6} \\ s^{6} & s^{6} & \mathcal{O}(g) \end{pmatrix}, \quad Y_{d} = \begin{pmatrix} 0 & 0 & s^{5} \\ 0 & s^{5} & 0 \\ 0 & 0 & s^{6} \end{pmatrix}, \quad Y_{e} = \begin{pmatrix} s^{6} & s^{6} & 0 \\ 0 & s^{5} & s^{6} \\ s^{5} & 0 & 0 \end{pmatrix}$$

- We find many other configurations with the same characteristics ($\mu \sim m_{3/2}$, all exotics decouple, etc.) but different Yukawa couplings
- Effective Yukawa couplings ~ sⁿ vanish @ orbifold point

$$\left(\begin{array}{c} \text{hierarchical} \\ \text{Yukawa} \\ \text{couplings} \\ \text{in Nature} \end{array}\right) \longleftrightarrow \left(\begin{array}{c} \text{do we live} \\ \text{close to an} \\ \text{orbifold point} \\ ??? \end{array}\right)$$

