

CMS Masterclass 2022

Dr. Alberto Bragagnolo^{1,2} e Dr. Andrea Gozzelino³ (CMS Collaboration)

15 Marzo 2022

¹Università degli Studi di Padova

²INFN Sezione di Padova

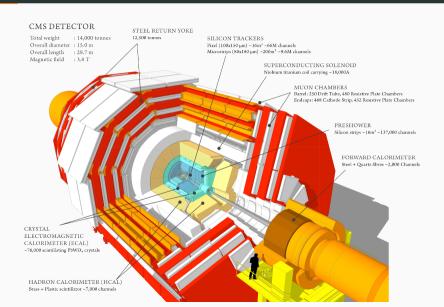
³INFN Laboratori Nazionali Legnaro

Introduzione

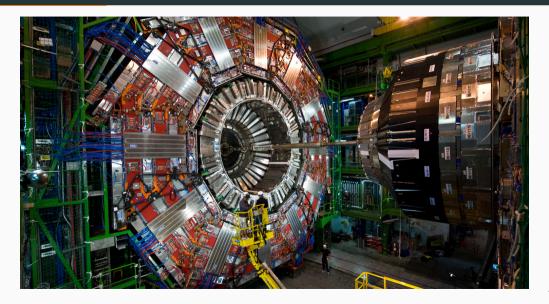
OBIETTIVO

 Utilizzare dati raccolti dall'esperimento CMS al fine di studiare eventi W/Z/H (bosoni W⁺, W⁻, Z e di Higgs)

STRUMENTI A VOSTRA DISPOSIZIONE

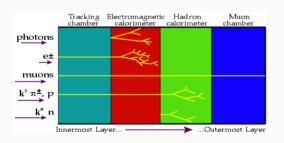

- event diplay CMS: interfaccia grafica che permette di visualizzare tridimensionalmente collisioni LHC
- CIMA: piattaforma online per la raccolta dei risultati

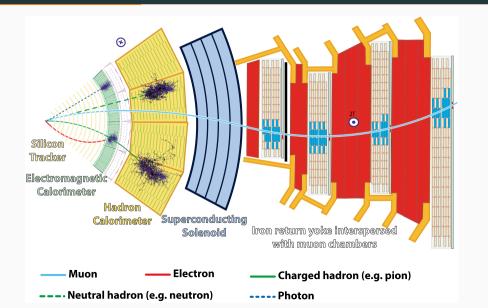
L'esperimento CMS



- · rivelatore "tuttofare" presso l'LHC
- · si trova in una caverna 100m sottoterra
- · pesa il doppio della Torre Eiffel
- il magnete superconduttore è il più potente mai costruito
 - 100 000 volte più potente del campo magnetico terrestre
 - · raffreddato -268.5 °C
- capace di fotografare più di 40 milioni di collisioni al secondo
- una delle più grandi collaborazioni scientifiche internazionali della storia (≈4000 collaboratori da ≈40 paesi)
- ha (co)scoperto il bosone di Higgs, quotidianamente studia le costanti della natura, cerca dimensioni extra e materia oscura

L'esperimento CMS

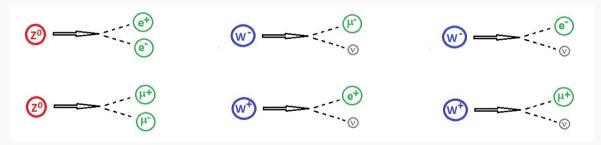

L'esperimento CMS


Particelle e rivelatori

Le particelle visibili vengono misurate tramite rivelatori diversi ed identificate dai loro comportamenti caratteristici dovuti al tipo di interazione con la materia:

- Le particelle cariche rilasciano un segnale nei rivelatori di traccia
 - I tracciatori misurano molto precisamente il percorso delle particelle cariche
- Le **particelle cariche ed i fotoni** rilasciano energia nei calorimetri elettromagnetici
- Gli adroni rilasciano energia nei calorimetri adronici
 - I calorimetri sono rivelatori che misurano l'energia di una particella
- Infine i muoni vengono tracciati dalle camere muoniche
 - "Solo" i muoni arrivano così lontano.

Particelle e CMS

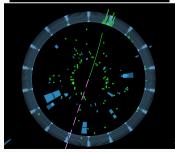


Preparazione agli esercizi

Preparazione agli esercizi

Categorie di particelle da riconoscere nell'esercizio:

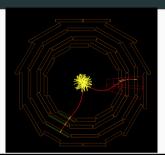
- 1. Candidati bosoni W⁺ e W⁻
- 2. Candidati NP (Neutral Particles): bosoni Z^0 o particelle neutre più leggere

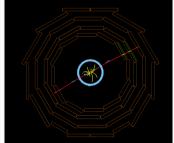

- 3. Candidati bosoni di Higgs $H \rightarrow Z^0Z^0$
- 4. Candidati bosoni di Higgs $extbf{ extit{H}} o \gamma \gamma$

Eventi candidati bosoni W

BOSONI W⁺ E W⁻

- Decadono in muoni o elettroni singoli ed un neutrino ad alta energia non rivelabile (→ energia mancante E_{miss})
 - $W^+ o \mu^+
 u o \mu^+ + E_{
 m miss}$
 - $\mathbf{W}^+
 ightarrow \mathbf{e}^+
 u
 ightarrow \mathbf{e}^+ + \mathbf{E}_{\mathrm{miss}}$
 - W $^-
 ightarrow \mu^- \overline{
 u}
 ightarrow \mu^- + \mathbf{\textit{E}}_{\text{miss}}$
 - W $^-
 ightarrow e^- \overline{
 u}
 ightarrow e^- + \emph{E}_{miss}$
- Una traccia rossa che produce un segnale nei rivelatori a muoni corrisponde ad un muone
- Una traccia verde che produce un segnale nel calorimetro elettromagnetico corrisponde ad un **elettrone**
- L'energia mancante è indicata con una linea tratteggiata viola
- La carica si distingue dalla curvatura
 - senso antiorario → carica negativa
 - senso orario → carica positiva

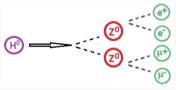




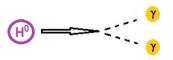
Eventi candidati NP

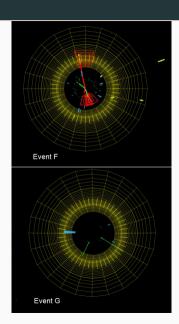
PARTICELLE NEUTRE

- · Decadono in coppie di muoni o elettroni
 - NP $\rightarrow \mu^+\mu^-$
 - $oldsymbol{\cdot}$ NP ightarrow e^+e^-
- I prodotti hanno carica opposta, quindi una curvatura con opposto segno di rotazione
- Nel caso di Z⁰ le tracce sono molto energetiche e quindi quasi dritte
- In questi processi non vengono prodotti neutrini, quindi non ci aspettiamo energia mancante



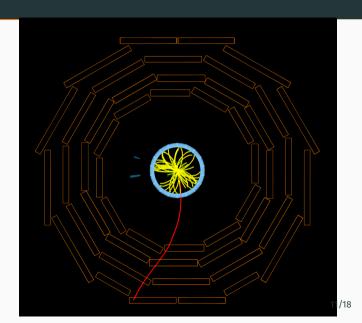
Eventi candidati Higgs


BOSONI DI HIGGS


L'Higgs può decadere in svariati modi, noi ci occuperemo di 2 casi:

1. $H \rightarrow Z^0Z^0$: i bosoni Z^0 poi decadono in coppie di muoni o di elettroni per un totale di 4 tracce

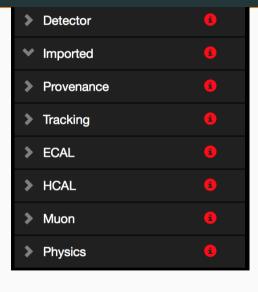
2. ${\it H}
ightarrow \gamma \gamma$: i fotoni sono neutri e lasciano segnale solo nel calorimetro elettromagnetico



Eventi "Zoo"

EVENTI "ZOO"

Gli eventi che non hanno tracce identificate come elettroni o muoni o fotoni oppure che non sono riconducibili a NP, W o H sono classificati come "zoo"

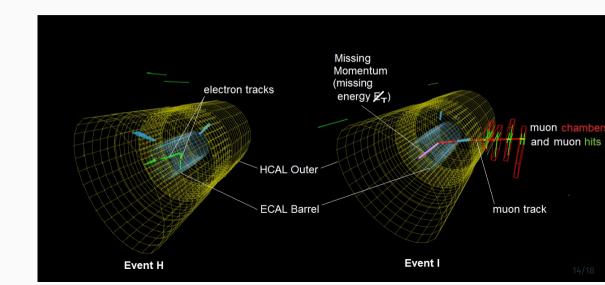


Obiettivi

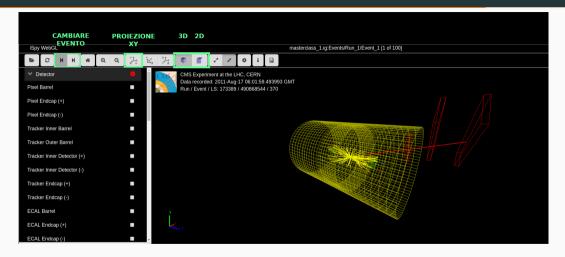
Vi verranno assegnati 100 eventi da esaminare. Analizzando l'evento, domandatevi:

- La traccia che sto osservando è un muone oppure un elettrone?
- È un W, uno Z o un'altra particella dello "zoo"?
- Se è un W, qual è la sua carica?
- Se è più probabile che si tratti di un candidato Z, è possibile identificare le due tracce dei leptoni ed usarle per trovare la massa invariante della particella decaduta?
- Se è più probabile che si tratti di un Higgs, è un decadimento in 4 leptoni o 2 fotoni?

Event Display – Funzioni



Il software **"iSpyWebGL"** dispone di diversi menu a tendina e funzioni


- · Visualizzare i diversi rivelatori
- · Quando sono stati presi i dati
- Visualizzare le risposte ("hits") dei diversi rivelatori
- Visualizzare gli "oggetti" ricostruiti (elettroni, muoni, fotoni, energia mancante)

Se l'evento contiene oggetti ricostruiti interessanti (muoni, elettroni, fotoni) la selezione è automatica. **L'energia mancante va abilitata a mano.**

Event Display

Event Display – Pulsanti utili

• La proiezione XY serve per determinare il senso di curvatura delle tracce (la visione 2D aiuta in questi casi)

Risultati

Alla fine dell'esercizio saremo in grado di misurare le seguenti cose:

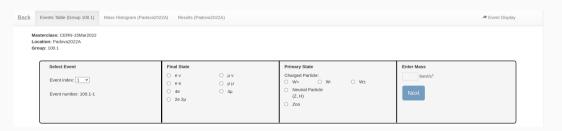
- il rapporto W/Z
- il rapporto W⁺/W⁻
- il rapporto e/μ
- la massa del bosone Z e di eventuali altre particelle con decadimenti simili presenti nel grafico della massa invariante

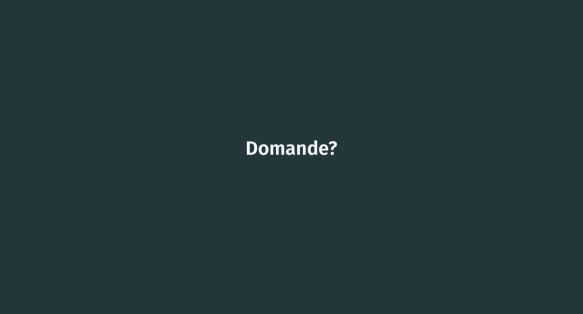
Durante la videoconferenza questi vostri risultati verranno combinati con quelli degli altri istituti, che partecipano alla Masterclass. In particolare:

- · Ogni istituto presenterà rapidamente i propri risultati
- I moderatori combineranno i dati di tutti gli istituti e vi mostreranno l'istogramma di massa della combinazione
- · Ci sarà uno spazio dedicato a domande e risposte

Dettagli tecnici: CIMA

- I risultati vanno riportati utilizzando l'interfaccia CIMA
- Dovrete selezionare la data (CERN-15Mar2022), il luogo (Padova2022A/B) ed il vostro gruppo




Choose your Masterclass	Choose your location	Choose your data file
SampleTables-Jan2021	Split2022B	100.1
Kharkov-CMLTP-10Jun2021	Zagreb2022A	100.2
Medford-15Jun2021	Pavia2022	100.3
Hammond-24Jun2021	Pleven2022	100.4
NotreDame-09July2021	Padova2022A	100.5
CERN-28Jul2021	Padova2022B	100.6
CERN-09Jul2021		100.7
CONF-Stavanger-03Aug2021		100.8
Seattle-10Sep2021		100.81
ERN-Fermilab-HCP-04Sep2021		100.82
Oviedo-12Oct2021		100.83
Test-14Sep2021		100.84
CIEMAT-02Nov2021		100.85
Vilnius-03Dec2021		100.86
CERN-03Dec2021		100.87
Sofia-03Jan2022		100.88
Cantabria_2-5May2022		100.89
Viterbo-16Feb2022		100.9
IDWGS-11Feb2022		100.91
CERN-01Mar2022		100.92
CERN-05Mar2022		100.93
CERN-04Mar2022		100.94
CERN-07Mar2022		100.95
CERN-09Mar2022		100.96
CERN-15Mar2022		100.97
CERN-17Mar2022		100.98
CERN21Mar2022		100.99

Dettagli tecnici: CIMA

Per ogni evento analizzato selezionate:

- 1. Il numero di evento
- 2. Le particelle individuate nello stato finale
- 3. La categoria individuata (W^{\pm} senza segno quando non si è sicuri della carica)
- 4. Per i candidati Neutral Particles occorre immettere a mano la massa invariate
- 5. Terminata la compilazione premete "Next"

