AXIOMA experiment Measurements on Er³⁺:YLF

Guarise Marco

Padova INFN

June 29, 2016

Summary

- 2 YLF crystal: past and present
- 3 spectroscopic investigation
- Ouble resonance laser: other measurements to understand
- 5 IRQC efficiency: possible estimation
- 6 other measurements
- Zeeman splitting: the measure
- I further improvements and measurements

Summary

IRQC scheme in Er³⁺

features

- GSA absorption in 1450 \pm 50 nm band;
- long lifetime of ${}^{4}I_{13/2}$;
- pump wavelength ~840 nm;

Summary

Er³⁺:YLF data

E (1000cm)1

Er:YLF characteristics

- energy gap $\sim 10.5\,{
 m eV}$
- phonon energy $\sim 500 \, \mathrm{cm}^{-1}$
- lifetime of ${}^4I_{13/2} \sim 20\,\mathrm{ms}$
- lifetime of ${}^4I_{11/2} \sim 5 \,\mathrm{ms}$
- fluorescence ratio ${}^4S_{3/2} \rightarrow {}^4I_{13/2} \sim 0.3$
- fluorescence ratio ${}^4S_{3/2} \rightarrow {}^4I_{15/2} \sim 0.7$

...then something bad happened! S/N~500

New set-up, new crystal

tests

- new optical windows
- new mounting
- new glue
- new crystal
- different section of laser beam

new Ti:Sa laser

Avesta project Moscow

features

- tunability: (690-1015) nm
- ▶ linewidth: < 2 GHz
- ▶ max output power: 1.5 W @780nm with 6.5 W pump
- polarization: $\sim 100\%$

lines in the ${}^4S_{3/2}$ manifold

other scheme

pump tuned to the $^4F_{7/2}$ level ${\rightarrow}{\sim}20500\,\text{cm}^{-1}$

line features
f _c =740.444 nm
$\Gamma \sim 4\text{pm}$
S/N=35
$\Delta E = 750 \mathrm{cm}^{-1} \rightarrow \mathrm{N} \sim 1.5$
$\Delta E = 750 \text{ cm}^{-1} \rightarrow N \sim 1.5$

N.B: ${}^{4}I_{9/2}$ =12750 cm $^{-1}$

pump GSA

Multiphonon Pump ground state absorption

$$I(E_1 + \Delta E) = I(E_1) \exp(-\alpha_{Stokes} \Delta E) + I(E_2) \exp(-\alpha_{Antistokes}(E_2 - E_1 - \Delta E))$$

$$\alpha_{Stokes} = (\hbar \omega_m)^{-1} \{ In[N/S_0(n+1)] - 1 \} \qquad \alpha_{Antistokes} = \alpha_{Stoke} + 1/k_B T$$
(1)

F Auzel, "Multiphonon-assisted anti-stokes and stokes fluorescence of triply ionized rare-earth ions." Physical Review B, 13(7):2809, 1976.

multiphonon absorbtion

multiphonon absorbtion

efficiency

beam section
$$\mathsf{S}{=}\pi\mathsf{r}^2\sim 1.1\cdot 10^{-2}\mathsf{cm}^2$$

Guarise Marco (Padova INFN)

efficiency

$$\epsilon_{up} = \frac{N_1(up)}{N_1(up) + N_1(down)} = \frac{N_1\sigma_{12}\frac{l_p}{h\nu_p}}{N_1\sigma_{12}\frac{l_p}{h\nu_p} + \frac{N_1}{\tau_1}} = \frac{1}{1 + \frac{1}{\tau_1\sigma_{12}\frac{l_p}{h\nu_p}}}$$
(2)

Consider also recycle mechanism:

$$\eta_{UC} = \frac{N_{\nu}}{N_{IR}^*} = \epsilon_{up}\beta_{20} + \epsilon_{uc}^2\beta_{21}\beta_{20} + \epsilon_{up}^3\beta_{21}^2\beta_{20} + \dots = \frac{\frac{\beta_{21}}{\beta_{20}}}{\frac{1}{\beta_{21}\epsilon_{uc}} - 1}$$
(3)

Max efficiency

 η_{UC} @~800 mW=~ 70%

laser pulses

Guarise Marco (Padova INFN)

polarization measurements

Guarise Marco (Padova INFN)

apparatus

permanent magnet

- ▶ gap~5 cm
- ▶ field ~280 mT

Zeeman splitting

questions too much symmetry? linewidth?

Zeeman effect

$$\left. \begin{array}{l} \delta E = \mu_b \cdot \mathbf{B} \\ \mathbf{B} = 290 \text{ mT} \end{array} \right\} \! \rightarrow \sim 6 \text{ GHz splitting}$$

In Er:YLF

New gain chip laser Innolume

Thanks for your attention