Photon Reconstruction Status

J.C. Brient, P. Gay, F. Le Diberder, S. Monteil, F. Yermia
• Framework

• Approaches
 - TOWER
 - VICINITY
 - Photon FinDer
 - EMILE

• Tests
 - Isolated Photons
 - π^+/γ

• Conclusions
- GEANT 4
- Projective Geometry (LINEAIRE)
- Non-projective Geometry (MOKKA)

- Interface of the CODES with the non-projective geometry is on progress and no difficulty is foreseen

- The informations are centralized on the Web Site http://lc-ecal.in2p3.fr
• Projective Geometry
• **Clusterisation** is the collection of every pads in a 5x5x40 (θ, φ, layer) tower around the most energetic pad if such a pad is not-isolated.
If no not-isolated pad exits, the zone is reduced to a 3x3X40 tower around the most energetic pad.

• **Test**
Isolated Photons from 250 MeV up to 30 GeV

Resolution obtained as a function of E_γ

$$\frac{\Delta E}{E} = (10.3 \pm 0.3)\% \bigg/ \sqrt{E} + (1.1 \pm 0.1)\%$$

• Acts as a benchmark
• Indicates the intrinsic performances of the Si/W ecal
• Projective Geometry
• **Clusterisation** is based on vicinity rule between the pads

Rule: 2 pads with at least a corner or/and a side in common are connected

i) Clustering begins on the most energetic pad not already involved
ii) A cluster is the collection of all pads linked by the vicinity rule after iterative loop on all the pads already collected.
iii) goto i)

• **Tests**
Isolated Photons from 250 MeV up to 15 GeV

Fraction of collected energy as a function of E_γ
• Projective Geometry
• Isolated Photons from 250 MeV up to 15 GeV

Fraction of collected energy as a function of the energy

![Graph showing fraction of collected energy vs. root of energy in GeV]

The cluster under consideration should have more than 5 pads involved.

The fraction of collected energy is less than 80% @ 250 MeV while it decreases to 60% when only the most energetic cluster is taken into account.

• A rule to connect the clusters has to be defined
Which pads to use?

1 - reject from the list of pads, all pads within some distance to the extrapolation of a charged track (1cm)

VIRTUAL STACK 1

1 - Create a \textit{virtual stack} by summing the first 10 layers
2 - order by energy the \textit{virtual pad(s)} of the virtual stack
3 - Start a new \textit{virtual cluster(s)} as soon as a pad is not a neighbour of the previous virtual pad in the energy ordered list.

\textit{(GAMPEX - ALEPH photon package)}

CLUSTERING kernel

1 - Start from the \textit{virtual cluster(s)} as entry point to clustering for all \textit{real pad(s)}
2 - Use “equivalent distance” at the ECAL entry to declare 2 pads are neighbours
3 - Recover unassociated pads by the angle between the “direction” of a cluster and the “direction” of a pad.

see next transparency for the definition of the direction
• **What is ’direction’**

 for a cluster

 Vertex to COG of the cluster

 for a pad

 projected COG to entrance of the ECAL to Pad position

• **Tests**

 - Use of MOKKA

 - Simulate photons from 0.15 to 100 GeV
PHOTON simulated with GEANT4 and MOKKA

Clustering efficiency %

<table>
<thead>
<tr>
<th>Photon energy (GeV)</th>
<th>Clustering efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>99</td>
</tr>
<tr>
<td>0.5</td>
<td>98</td>
</tr>
<tr>
<td>0.75</td>
<td>97</td>
</tr>
<tr>
<td>1</td>
<td>96</td>
</tr>
<tr>
<td>1.25</td>
<td>95</td>
</tr>
<tr>
<td>1.5</td>
<td>94</td>
</tr>
<tr>
<td>1.75</td>
<td>93</td>
</tr>
<tr>
<td>2</td>
<td>92</td>
</tr>
</tbody>
</table>

\[\frac{E_{\text{cl}}}{E_{\text{gen}}} \]

- PFD efficiency to find photon in the low energy region:
 - About 99% above 0.25 GeV

- Rate of fake electromagnetic cluster (created from fluctuation of an electromagnetic shower):
 - About few per mill - 4×10^{-3} at 0.5 to 9×10^{-3} at 100 GeV

- Fraction of the total energy in the cluster:
 - Stable and about 95% up to 4 GeV then slowly going to 99.5% at 100 GeV
PHOTON simulated with GEANT4 and MOKKA

\(\chi^2/\text{ndf} \quad 0.2098 \quad / \quad 2 \)

A0 \quad .2394E-01 \quad \pm \quad .8991E-02

A1 \quad .1085 \quad \pm \quad .6312E-02

\[\Delta E/E \]

\[\delta \theta \text{ (mrad)} \]

PHOTON simulated with GEANT4 and MOKKA

\(\chi^2/\text{ndf} \quad 0.7118 \quad / \quad 3 \)

A0 \quad .4783E-02 \quad \pm \quad .1256E-02

A1 \quad .1367 \quad \pm \quad .5804E-02

\[\Delta E/E \]

\[\delta \theta \text{ (mrad)} \]

4 - Energy and angular resolution

AFTER CLUSTERING

the stochastic term is \(11.4\%/\sqrt{E} \)

up to few GeV then about

\(13.7\%/\sqrt{E} \)

\[\delta \theta \text{ (mrad)} = 0.63/\sqrt{E} + 0.24 \text{ down} \]

to few hundred MeV
Beside the Standard approaches, new one is developed:

Energy Measurement Intended for Low Em showers

Main Directions

- 3D
- Democratic
- Physical insight
- No seed
- Long range
- Two pads \((i \text{ and } j)\) are connected according a link strength \(d_{ij}\) defined by terms which reflects the basic process \((e \rightarrow \gamma, \gamma \rightarrow e)\)

\[
\text{Energy relation: } E_i/E_j \\
\text{Angular dependence: } 1/(1-\beta \cos \theta_{ij})
\]

\(\rho_{ij}\) is the 3D distance between the pads \(i\) and \(j\),
\(X_o\) is the interaction length,
\(\theta_{ij}\) is the angle between the pad \(i\) and \(j\),
\(\beta = .99\)

Thus \(d_{ij}\) is defined as

\[
d_{ij} = e^{-\rho_{ij}/X_o} \times E_i/E_j \times 1/(1-\beta \cos \theta_{ij})
\]
Energy Measurement Intended for Low E\textsubscript{m} showers

- d_{ij}
 - The d_{ij} terms are determined between every pair of pads in the event but pad j should be on a layer outer than the pad i i.e. follows the development of the e.m. shower
 - All pads are connected without any initiate pad (in contrast with maximal energy pad rule)
 - The energy from a pad could be shared by many objects

- An internal cut is applied

preliminary Version!

Cuts have to be tuned (or replaced by continuous function)
Clustering

- **def**: Each pad j with $d_{ij} = 0$ whatever i is a terminal pad.
- **Rule**: From the outer layer (i.e. 40th) the energy is distributed on each pad according to d_{ij} down to each terminal pad.

- A terminal pad defines a cluster
- Every characteristic of the cluster is built through the d_{ij} weighting from the 40th layer to the terminal pad.

Examples: Energy, terminal pad coordinates, core cluster coordinates...
• **Cluster association**

Two clusters \((a\) and \(b\)) are merged if
\[
\|D_{\text{entry}}^a - D_{\text{entry}}^b\| \leq 1.73 \text{ or } \|D_{\text{core}}^{a,b}\| \leq 0.5
\]

where \(D_{\text{entry}}\) stands for the Distance from the center of the detector and the terminal pad point, and \(D_{\text{core}}^{a,b}\) is the distance between the barycenter of the cluster \(a\) and \(b\).

Cuts have been tuned to ensure the best recovering of photon energy

• **Tests**

Projective Geometry
Isolated Photons from 100 MeV up to 15 GeV
EMILE: Low Photons

$E_\gamma = 100$ MeV

$E_{\text{meas}} / E_{\text{expected}}$

$E_\gamma = 250$ MeV

$E_{\text{meas}} / E_{\text{true}}$
\[\frac{\Delta E}{E} = (11.0 \pm 0.3)\% \sqrt{E} + (1.4 \pm 0.2)\% \]

Fraction of collected energy is never less than 92\% even when only the most energetic cluster is taken into account.
• **Tests**
• Photons with noise coming from π^+

Samples with different distances between the γ and the π^+

Typically $E_\gamma=1$ GeV and $E_\pi=10$ GeV
Distance is 4, 3 and 2 cm

The clusters matching the MC photon direction are considered as photons

@ 4 cm
The clusters matching the MC photon direction are considered as photons.
Photon with Pions

@ 4 cm

to Simulate the Photon-Id a cut on \((E_{\text{e.m.}}/E_{\text{meas}})_{\text{cluster}}\) is applied.

The cut is 'tuned'\(^{(1)}\) to render the distribution gaussian

\(^{(1)}\) typically .75
Photons With Pions

Display @ 3 cm

knevt=36 dist=3cm

<table>
<thead>
<tr>
<th>knevt</th>
<th>E_{meas}</th>
<th>E_{π}</th>
<th>E_{γ}</th>
<th>the phi</th>
<th>lay</th>
<th>E_{π}^{true}</th>
<th>E_{γ}^{true}</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>2.768</td>
<td>1.413</td>
<td>1.355</td>
<td>0</td>
<td>513</td>
<td>1</td>
<td>6.071</td>
</tr>
<tr>
<td>36</td>
<td>0.014</td>
<td>0.001</td>
<td>0.013</td>
<td>-2</td>
<td>511</td>
<td>2</td>
<td>6.071</td>
</tr>
<tr>
<td>36</td>
<td>0.265</td>
<td>0.240</td>
<td>0.025</td>
<td>0</td>
<td>510</td>
<td>15</td>
<td>6.071</td>
</tr>
<tr>
<td>36</td>
<td>2.870</td>
<td>2.785</td>
<td>0.086</td>
<td>1</td>
<td>516</td>
<td>1</td>
<td>6.071</td>
</tr>
<tr>
<td>36</td>
<td>0.033</td>
<td>0.033</td>
<td>0.000</td>
<td>-11</td>
<td>510</td>
<td>39</td>
<td>6.071</td>
</tr>
<tr>
<td>36</td>
<td>0.403</td>
<td>0.403</td>
<td>0.000</td>
<td>-2</td>
<td>503</td>
<td>5</td>
<td>6.071</td>
</tr>
<tr>
<td>36</td>
<td>0.795</td>
<td>0.795</td>
<td>0.000</td>
<td>1</td>
<td>521</td>
<td>9</td>
<td>6.071</td>
</tr>
<tr>
<td>36</td>
<td>0.035</td>
<td>0.035</td>
<td>0.000</td>
<td>-3</td>
<td>519</td>
<td>17</td>
<td>6.071</td>
</tr>
<tr>
<td>36</td>
<td>0.050</td>
<td>0.050</td>
<td>0.000</td>
<td>4</td>
<td>516</td>
<td>1</td>
<td>6.071</td>
</tr>
<tr>
<td>36</td>
<td>0.013</td>
<td>0.013</td>
<td>0.000</td>
<td>-2</td>
<td>521</td>
<td>17</td>
<td>6.071</td>
</tr>
<tr>
<td>36</td>
<td>0.029</td>
<td>0.029</td>
<td>0.000</td>
<td>-4</td>
<td>521</td>
<td>24</td>
<td>6.071</td>
</tr>
<tr>
<td>36</td>
<td>0.009</td>
<td>0.009</td>
<td>0.000</td>
<td>-4</td>
<td>517</td>
<td>16</td>
<td>6.071</td>
</tr>
<tr>
<td>36</td>
<td>0.015</td>
<td>0.015</td>
<td>0.000</td>
<td>6</td>
<td>521</td>
<td>17</td>
<td>6.071</td>
</tr>
<tr>
<td>36</td>
<td>0.217</td>
<td>0.217</td>
<td>0.000</td>
<td>1</td>
<td>519</td>
<td>10</td>
<td>6.071</td>
</tr>
<tr>
<td>36</td>
<td>0.034</td>
<td>0.034</td>
<td>0.000</td>
<td>7</td>
<td>517</td>
<td>19</td>
<td>6.071</td>
</tr>
</tbody>
</table>
Photon with Pions
@ 3 cm

With such assumptions Preliminary Results are

@ 4 cm $\epsilon_\gamma = 80\%$
@ 3 cm $\epsilon_\gamma = 50\%$
@ 2 cm $\epsilon_\gamma = 22\%$

NB. No rejection of the π^+ shower nor Mip reconstruction

More realistic numbers will come with Photon-Id
Conclusion

1 Standard approaches
 – Photon FinDer is an efficient photon finder
 – It is a good starting point for photon
 – Could play the Benchmark rôle, already interfaced w/ MOKKA

2 New approach with EMILE
 – (3D, democratic, Physical insight, no seed, long range)
 – Preliminary version
 – Many switches have to be tuned

Next
 • New Codes will be available from the Web Site
 • interfaced w/ MOKKA very soon
 • Included in BRAHMS
 • More investigation with noisy situation
 • Test the algorithms with jets, τ decays, etc.

– Regular meeting are forseen (last one 13th April 2000)
– KEK people are interested (F. Le Diberder will visit them on july)