The MAGIC Telescope(s)

- Nicola Turini -Univ. of Siena & HAFA AGIC Telescope PISA · Galactic sources • Extragalactic sources • MAGIC II

TeV 2007 Venezia 30 Aug 2007

MAGIC: The Collaboration

IFAE, UAB, IEEC, U Barcelona, Inst Astrof Andalucía, Inst Astrof Canarias, UC Madrid, MPI München, U Würzburg, HU Berlin, U Dortmund, Desy, INFN/U Pd, INFN/U Si, INFN/U Ud, INAF, UC Davis, ETH Zürich, U Lodz, Tuorla Obs, Yerevan Ph Inst, INR Sofia

Many World Records:

- 1st working system of analogue transmission via optical fibres
- 1st light weight carbon fiber frame
- 1st sub-µs topological trigger among Cherenkov detectors:
- widest refl. surface (236 m², 17 m \varnothing)
- lowest energy threshold
- fastest slewing system (40 s for 360° azimuth turn)

Main features:

- 3.5° FoV Camera, 576 enhanced QE PMTs
- Trigger threshold: 50 GeV (can be lowered at 30 GeV with L2 trigger)
- Sensitivity: 2.5% Crab @50 hrs
- Energy res: 20+30%
- Ang. res (γ PSF): 0.1°

MAGIC: Galactic Sources

The Crab Nebula The Galactic Centre

PSF

19^h56ⁿ RA

Galactic Sources: overview

ApJ 638 L101 2006 $\rightarrow E_{th} \sim 600 \text{ GeV}$ Spct. idx: 2.2 ± 0.2 compatible w/HESS No variability

ApJ 637 L41 2006 $\rightarrow E_{th} \sim 400 \text{ GeV}$ Spct. idx: 2.15 ± 0.3 compatible w/HESS more data needed Lept/had discrim.

The Galactic Centre

Sci 312 1771 2006 $\rightarrow E_{th} \sim 200 \text{ GeV}$ Spct. idx: 2.6 ± 0.2 Variable! Miniature AGN

The Crab Nebula: toward the Compton Peak

Submitted to ApJ

- Zenith angle < 20° @LE
- Spectrum measured between 60 GeV and 9 TeV
- Spectral idx ≈ 2.31
- Spectrum shows a clear peak at 77 ± 47 GeV
- Spectrum steady
- Source pointlike
 1st measure below 100
 GeV with Cherenkov!

The Crab Pulsar

- Steady emission coincident with pulsar
- Optical phaseogram read on-site"
- No evidence of pulsation
- Constraints set
 ⇒ exponential cutoff
 < 27 GeV
 ⇒ supra-exp cutoff
 < 60 GeV

Optical phaseogram @MAGIC

MAGIC J0616+225 (in IC443)

¹²CO emission (cyan), 20 cm VLA (green) ROSAT (purple), EGRET (black), CXOU J061705.5+222127 (white star), 1720 MHz OH maser (black dot)

• 6.5% CU @100GeV, 3% CU @300GeV

- spct. idx 3.1 ± 0.3
- no flux variations
- pointlike emission
- \cdot correlated w/ mol. clouds (10⁴ M_{\odot})
- well corr. w/1720 MHz maser (shock?)
- alternative: PWN displaced emission?

Cygnus X1: THE Black Hole

1st evidence of BH in VHE

Submitted to ApJ 42.6 hrsa in 26 night UL @ 1÷5% CU 26/09/2006: 4.0 27/09/2006: 4.9 Coincident with CygX1 Coinc. w/ hard X flare

Cygnus X1, BH X-ray binary: BH 21 M_☉ + O9.7 40 M☉ • 5.6 days period • X ray flaring activity well known • arclike from jet-ISM interaction

Extragalactic Sources in VHE energies

Source	Redshift	Sp.	Types	Discovery	Observation
M 87	0.004	2.9	FR-I	HEGRA	HESS
Mkn 421	0.031	2.2	HBL	Whipple	many
Mkn 501	0.034	2.4	HBL	Whipple	many
1ES 2344+514	0.044	2.9	HBL	Whipple	MAGIC
Mkn 180	0.045	3.3	HBL	MAGIC	
1ES 1959+650	0.047	2.4	HBL	7ΤΑ	many
PKS 0548-322	0.069		HBL	HESS	
BL Lac	0.069	3.6	LBL	MAGIC	
PKS 2005-489	0.071	4.0	HBL	HESS	
PKS 2155-304	0.116	3.3	HBL	Durham	many
1ES 1426+428	0.129	3.3	HBL	Whipple	HEGRA
1ES 0229+200	0.139		HBL	HESS	
H 2356-309	0.165	3.1	HBL	HESS	
1ES 1218+304	0.182	3.0	HBL	MAGIC	VERITAS
1ES 1101-232	0.186	2.9	HBL	HESS	
1ES 0347-121	0.188		HBL	HESS	
1ES 1011+496	0.212	4.0	HBL	MAGIC	
3C 279	0.538		FSRQ	MAGIC	
PG 1553	?	4.0	HBL	HESS/MAGIC	

MAGIC: Extragalactic Sources

New large Z sources

BLLac Object 1ES1011+496 (0.212) Triggered by an optical outburst Subm APJ 29 jun 2007

> Quasar 3C 279 (0.536) Flare seen Feb 23rd 2006

Extragalactic Sources: overview

ApJ 648 L105 2006 → E_{th} ~200 GeV Spct. idx: 3.3 ± 0.7 MAGIC discovery! Trig. by Opt+X-ray 11% Crab

1es1959+650 (0.047)

ApJ 642 L119 2006 → E_{th} ~180 GeV Spct. idx: 2.9 ± 0.2 Orphan flare 1st obs quiescent! 11% Crab

Mrk 180 (0.045)

ApJ 662 892 2007 $\rightarrow E_{th} \sim 350 \text{ GeV}$ Spct. idx: 2.95 ± 0.2 W+H evidence W: in flare @0.6CU 5% Crab!

¹⁵ ApJ 639 761 2006 $\rightarrow E_{th} \sim 120 \text{ GeV}$ Spct. idx: 3.0 ± 0.4 ¹⁰ MAGIC: 13% CU ¹¹ W: $\Phi_{>350GeV} < 8\%CU$ H: $\Phi_{>750GeV} < 12\%CU$

Extragalactic Sources: overview

Markarian 501: Fast variability (subm. Apj)

- 24 nights: $\Phi < 0.5$ CU and $\Phi > 1$ CU
- for 2 nights: $\Phi > 3$ CU $T_{2*} \approx 2$ min
- harder spectra @ harder fluxes
- Variability increased with energy

Markarian 501: Time lag

- Evident 4±1 min Time Lag between $\Phi_{<250GeV}$ and $\Phi_{>1.2TeV}$
- May be explained by the particle acceleration process
- BUT, if photons at diff. E • emitted simultaneously: Lorentz invariance violation? $\Delta T \sim 4 \min$, $\Delta E \sim 1 TeV$ \Rightarrow M_{OG1}~ 0.4 x 10¹⁸ GeV or M_{OG2} ~ 0.6 x 10¹¹ GeV probe a vacuum refractive index $\simeq 1 - (E/M_{OGn})^n$, n = 1, 2 Sub Apj 21 aug

BL Lac: new source and new class (LBL)

LBL: low frequency BL Lac For Cherenkov telescope: low energy threshold For GLAST: easier to detect From Aug to Dec 2005 (22 hrs)
→ 3% Crab @200 GeV, idx: -3.6± 0.5
no flux variation
From Jul to Sept 2006 (26 hrs)
→ NO EXCESS!
Follows the trend in optical activity

HBL 1ES 1011 +496 (0.212)

Magic observations triggered by optical light curves at KVA

Optical light curve (KVA)

FS Radio Quasar 3C279 (0.536)

The source was detected in one night (Feb 23rd 2006) in high state with 6.1 σ signal at energies <200 Gev and 5.1 σ at higher energies. It is the farthest object observed at these energies

GRB Observations

- 22 GRBs follow-up:
 2 even while during the prompt emission
- UL ≈ 80 GeV
- Analysis results sent via GCN asap!
 Need a
- Need a closer GRB

• GRB 050713a

ApJ 641 L9 (2006)

The future: MAGIC II

- Mirror redesign: $0.5 \times 0.5 \text{ m}^2 \rightarrow 1 \times 1 \text{ m}^2$
- Better sealing of mirrors
- Faster DAQ: 300 MHz \rightarrow 2 GHz
- Better DAQ: lower dead time
- Higher QE PMT (2×)
- Stereo observation

MAGIC II Monte Carlo Studies

Stereo Analysis:

- observe shower simultaneously with 2 telescopes
- 3D shower reconstruction
- Additional shower parameters:
 - Impact parameter
 - Shower maximum (h_{max})
 - Eliminate ambiguity on arrival direction
- Better reconstruction of energy and arrival direction
 Improved background rejection

Improved Reconstruction

- Energy resolution
 - MAGIC-I: ~25%
 - MAGIC-II: 14-20% (2 telescopes)

Angular resolution

- Substantial (~50%) improvement since source position is obtained from intersection point of both showers

Improved Sensitivity

using Stereo Analysis

- better background rejection down to low energies
- increase sensitivity by up to factor 3
 => reduce observation time by factor 9
- Large gain in sensitivity at low energies (< 100 GeV)

Mirrors

- Parabolic tessellated reflector
- 249 spherical 1 m^2 mirror elements
- Active mirror control
- 2 technologies:
- All aluminum mirrors
 - MAGiC-I technology
 - Diamond milled Al surface
 - Excellent focal spot
 - ~87% reflectivity
- Glass mirrors
 - New technology
 - 2 mm glass plates
 - Al honeycomb layer
 - Quality and robustness under investigation

Diamond milling

0.5 cm

Camera

Design criteria:

- High Photon detection efficiency
- 500 MHz bandwidth for entire signal chain

Modular design

- Clusters of 7 pixels
 => easy replacement
 => upgrade possibility to higher
 - QE photosensors

Field of View (FoV)

- 1039 identical 0.1° FoV pixels
- Round configuration
- Total FoV: d=3.5° (similar to MAGIC-I)

Light Sensors

Phase 1

- Hamamatsu R10408 PMTs
- Peak QE typically 34%
- Fast 1 ns signals
- 0.3-0.4% afterpulse (@ 4 ph.e.)
- Cockroft-Woltan HV generator in PMT socket

PMT HV amplifier VCSEL

Phase 2

- Upgrade inner camera with HPDs
- Peak QE ~ 50%
- Use outer camera corners for field test
- => Increase sensitivity for low energy showers

Increase trigger area:

- d=1.9° => d=2.5°
- => Larger effective FOV
- => Improved sensitivity for
 - Sky scan
 - Extended sources
 - Wobble mode observation

2 telescope coincidence trigger

Fast digitization: Domino Ring Sampler

- 2 up to 7 GSamples/s analog sampling in a series of 1024 capacitors
- 400 MHz bandwidth improved to 500Mhz in version III and IV
- 12 channels per chip
- slow (40 MHz) readout and external 12 bit digitization

very flexible and compact

Design: Stefan Ritt Paul Scherrer Institute (Villigen,CH)

Magic II upgrade summary

- MAGIC-II operational first half of 2008 (inauguration Sept 2008)
- High QE camera
- Fast signal processing
- Improve sensitivity by factor ~3
- Lower analysis threshold

Conclusions

MAGIC scientific campaign (1+0.7 years): >>> VHE Physics @ 2% Crab level <<<

- 4 new extragalactic sources
- 3 new galactic sources
 Among them:
- Variable source (binary LSI +61 303)
- Short term flux and spct. variability (Mrk 501)
- New "VHE-loud" classes (LBL, BHs)

A MAGIC Catalogue of 21? sources after 2 years Data cycle 3 has just started: >>> MAGIC 2 completion and physics below 1% Crab <<<