IceCube Potential for Low Energy Physics

Carsten Rott (Pennsylvania State University)

or the IceCube Collaboration

What's Low Energy in IceCube ?

- Atmospheric neutrinos
 - Oscillations (30 100 GeV)
- Astroparticle physics
 - Point sources (>100 GeV)
 - Wimps
 - Solar / Earth / Galactic center

Atmospheric Muon Neutrino Sensitivity

Neutrino Oscillations

Combined IceCube & AMANDA Detector

- Combined detector significantly increases performance at low energies
- Greater effective area
- Improved angular resolution
- Outer strings can be used as veto

[See poster from Martin Tluczykont & Andreas Gross]

Contained and Partially contained events

- 7 IceCube + 18
 AMANDA strings form a densely instrumented "Inner Core"
 - Lower energy threshold
- Peripheral IceCube strings form veto volume
 - Especially useful for physics with contained and partially-contained events

Contained and Partially-contained Events

Defined sub-detection volume in blue color (starting tracks in this region) Peripheral strings and DOMs in the top section of the strings are used as veto

Low Energy Events Filter

Effective Volume for signal events after filter selection cuts for the contained events filter

Signal events were defined as muon neutrinos with a charged current interaction in the inner detector region

 4π sensitivity

- Event recorded at pole get filtered for transfer via satellite
- Full triggered dataset on tapes

Indirect Search for Dark Matter

Solar WIMP Sensitivity

IceCube Triggers and Sensitivity

- Topological trigger allow to lower the energy threshold further
 - Selects events based on a certain pattern present in the detector
- IceCube geometry especially sensitive to vertical events
- String Trigger selects events consistent with vertically up/down-going muons

IceCube String Trigger

Specialized low energy vertical events trigger

Detect low energy neutrinos (>30GeV)

Substantially lower energy threshold compared to default IceCube multiplicity trigger

Especially add sensitivity to vertical events

Efficiency for detectable v_{μ} signal string trigger (5 out of 7) 0.7 ⊡ Cos 0.8 0.6 0.6 0.4 0.5 0.2 0.4 -0 -0.2 0.3 -0.4 0.2 -0.6 -0.8 0.1 -Կ 1.2 1.4 1.6 1.8 2.2 2.4 2.6 2.8 3 2 Muon Neutrino Energy Log(E, /GeV) Detectable events were defined as events that have at least one hit in the detector

Another approach to Atmospheric v Oscillations

- Lowest energy threshold is realized in vertical events
- Reconstruction might be possible for those events due to the IceCube geometry
- E<30 GeV may be reachable with vertical muons
 - 17m spacing in z-dimension
 - muon travels ~4 m/GeV
 - need at least 5 DOMs: 68 m
 - $E_{\mu,\min} = 68/4 = 17 \text{ GeV} (E_{\nu,\min} = \sim 25 \text{ GeV})$
 - Look at μ_{up}/μ_{down} as a function of μ track length
 - Track length (and initial shower) to estimate E
 - Related idea discussed in Albuquerque and Smoot, PRD.64.053008
 - issues:
 - Kinematic v- μ angle
 - ~flat inelasticity (y) distribution
 - Atmospheric muon background

Future

- Dense sub-array detector under investigation
- Same technology as IceCube
- Large veto region can effectively remove down-going muon background
- Would be deployed in the deep ice
 - Lower atmospheric muon background
 - Clear ice (below 2100m)
 - Effective Veto from surrounding IceCube strings and DOMs above

Conclusions

- AMANDA and IceCube are operating jointly and collecting data
- Dataset especially interesting towards low energy analysis
- New searches for WIMPs, Neutrino Oscillations, ... underway
- Studies towards new deeper low energy core

Backup Slides

Kinematic v_{μ} - μ angle

• Intrinsic uncertainty in angular resolution

Atmospheric vs astrophysical v

- Atmospheric
 - $v_{\mu}: v_{e}: v_{\tau} \sim 2:1:0$
 - Steady flux
 - $sec(\theta)$ distribution
 - Steep spectrum
 - v_e very steep
 - "prompt" neutrinos
 - $v_{\mu}: v_{e} = 1:1$
 - normalization uncertain
 - harder spectrum

- Astrophysical
 - $v_{\mu}: v_{e}: v_{\tau} \sim 1:1:1$
 - Flux may be variable
 - Point sources expected
 - Harder spectrum
 - All flavors similar spectra
 - Charm decay is important background for search for astrophysical neutrinos

Low Energy Events in IceCube

- Low Energy threshold driven by geometry and trigger condition
- Analysis related:
 - Is there a potential to reconstruct events ?
 - Atmospheric Muon background increases
 - ... deeper is better

