

Study of Flux and Spectral Variations in the VHE Emission (from the Blazar Markarian 501

David Paneque on behalf of the MAGIC collaboration Astro-ph/0702008 ; in press ApJ 669 (2007)

OUTLINE

1- Motivation to observe Mrk 501 (given previous talk)

2- Highlights from the Mrk 501 observations performed with MAGIC in June-July 2005 (*details in the paper*)

3- Conclusions and outlook

2-The MAGIC Telescope (see Turini et al)

Largest Imaging Air Cherenkov Telescope (IACT) for performing γ-ray astronomy. In operation since Sept. 2004

17 m \oslash mirror dish (**239 m**²) **3.5**^o Field of View camera with **576 high-QE PMTs** Fast repositioning $t_R < 40 \text{ s}$

Trigger threshold energy: ~50 GeV Minimum energy for spectral analysis : 100 GeV Angular resolution per incoming photon: 0.1°-0.15° Energy resolution : 20%-30% Point source sensitivity: 2.5% Crab / 50 hours

2- Analysis of the MAGIC data (24 nights, 32 h) June-July 2005

Flux and spectra determined on a night-by-night basis

Obs. Nights				Gamm	a-Flux	Power Law fit to spectr			
MJD	T_{obs} a	$\rm ZA^b$	$S_{comb}{}^{ m c}$	$F_{>150 \ GeV}^{\rm d}$	$F_{>150 \ GeV}$	$K_0{}^{ m e}$	a^{f}	$\chi^2/NDF^{ m g}$	= P ^h
Start	(h)	(deg)	sigma	$(rac{10^{-10} \ ph}{cm^2 \cdot s})$	$(Crab \ Units)$	$(\frac{10^{-10} \ ph}{cm^2 \cdot s \cdot 0.3 TeV})$			(%)
53518.980	0.75	19.10-28.95	6.44	1.19 ± 0.25	0.37 ± 0.08	2.63 ± 0.48	2.17 ± 0.25	2.7/8	95.2
53521.966	1.85	9.97 - 30.10	8.90	1.51 ± 0.17	0.47 ± 0.05	2.94 ± 0.33	2.61 ± 0.16	10.8/7	15.0
53524.969	0.58	19.18 - 27.73	6.98	2.04 ± 0.29	0.64 ± 0.09	3.71 ± 0.53	2.47 ± 0.23	1.6/6	95.0
53526.975	0.98	9.96 - 28.94	8.69	1.63 ± 0.22	0.51 ± 0.07	3.26 ± 0.38	2.49 ± 0.17	3.8/9	92.4
53530.973	0.47	15.22 - 22.32	6.52	1.53 ± 0.32	0.48 ± 0.10	2.28 ± 0.65	1.97 ± 0.49	1.1/3	78.9
53531.959	0.90	15.21 - 25.15	6.98	1.29 ± 0.24	0.41 ± 0.07	2.69 ± 0.38	2.57 ± 0.30	9.1/6	16.6
53532.936	0.53	23.80 - 30.11	5.44	1.50 ± 0.28	0.47 ± 0.09	2.41 ± 0.53	2.34 ± 0.36	1.2/7	99.2
53533.933	1.63	12.85 - 30.09	7.83	1.44 ± 0.17	0.45 ± 0.05	2.46 ± 0.32	2.55 ± 0.19	10.3/8	24.2
53534.940	2.07	9.95-30.09	9.56	1.43 ± 0.15	0.45 ± 0.05	2.71 ± 0.27	2.68 ± 0.16	8.9/9	44.8
53535.934	3.43	9.95 - 30.07	18.58	2.69 ± 0.13	0.85 ± 0.04	4.45 ± 0.24	2.42 ± 0.06	11.9/12	45.3
53536.947	2.68	9.95 - 29.93	7.01	0.75 ± 0.13	0.24 ± 0.04	1.36 ± 0.21	2.73 ± 0.29	5.7/7	57.1
53537.971	3.08	9.95 - 30.10	11.52	1.25 ± 0.10	0.39 ± 0.03	2.08 ± 0.19	2.46 ± 0.14	8.2/8	41.4
53548.931	0.87	9.98 - 20.68	6.12	1.21 ± 0.25	0.38 ± 0.08	2.39 ± 0.38	2.28 ± 0.27	0.6/6	99.6
53551.905	1.09	12.86 - 25.15	32.02	11.08 ± 0.32	3.48 ± 0.10	17.37 ± 0.51	2.09 ± 0.03	26.2/11	0.6
53554.906	0.68	15.21 - 22.32	12.52	3.52 ± 0.30	1.11 ± 0.09	5.91 ± 0.47	2.26 ± 0.11	3.9/9	92.1
53555.914	0.44	12.85 - 22.32	6.08	1.27 ± 0.34	0.40 ± 0.11	2.96 ± 0.62	1.97 ± 0.29	1.9/6	92.5
53557.916	0.54	12.84 - 19.06	8.40	2.25 ± 0.32	0.71 ± 0.10	3.91 ± 0.48	2.30 ± 0.21	6.5/7	48.5
53559.920	0.98	9.94 - 17.22	10.05	1.85 ± 0.23	0.58 ± 0.07	3.10 ± 0.33	2.25 ± 0.13	8.4/8	39.9
53560.906	0.76	9.96 - 19.07	24.39	9.93 ± 0.38	3.12 ± 0.12	14.35 ± 0.56	2.20 ± 0.04	22.5/11	2.1
53562.911	1.63	9.94 - 16.79	11.08	2.19 ± 0.37	0.69 ± 0.12	2.83 ± 0.30	2.34 ± 0.13	14.1/8	8.2
53563.921	0.85	9.94 - 15.16	18.69	5.53 ± 0.28	1.74 ± 0.09	7.89 ± 0.39	2.25 ± 0.06	11.5/9	24.3
53564.917	0.34	9.94 - 15.18	8.91	2.89 ± 0.46	0.91 ± 0.15	4.88 ± 0.56	2.27 ± 0.20	5.4/6	49.7
53565.920	2.57	9.95 - 28.93	11.62	1.71 ± 0.13	0.54 ± 0.04	2.73 ± 0.22	2.49 ± 0.12	10.7/8	21.6
53566.953	1.91	9.99-30.10	11.63	1.33 ± 0.11	0.42 ± 0.04	2.16 ± 0.20	2.28 ± 0.13	7.4/10	69.0

2.1- Light curves (LCs): Gamma, X-rays, Optical

4

2.1- Light curves (LCs): Gamma, X-rays, Optical

2.1- Light curves (LCs): Gamma, X-rays, Optical

Assumption: Flux variation (flare) on the top of a stable emission

$$F(t) = a + \frac{b}{2^{-\frac{t-t_0}{c}} + 2^{\frac{t-t_0}{d}}}$$

a: pedestal (not fit)

- **b: amplitude of flux variation** t_0 : ~ peak position (not fit)
- c, d: flux-doubling times ⁸

Assumption: Flux variation (flare) on the top of a stable emission

$\frac{b}{(\frac{10^{-10} \ ph}{cm^2 \cdot s})}$	$\begin{pmatrix} b & c \\ \frac{10^{-10} \ ph}{cm^2 \cdot s} \end{pmatrix} \qquad (s)$		$\chi^2/NDF^{\rm d}$	P^{e} (%)
13.2 ± 4.7	$\begin{array}{c} 81{\pm}41\\ 95{\pm}24 \end{array}$	$50{\pm}23$	20.0/15	$17.3^{\rm f}$
20.3 ± 3.3		185 ${\pm}40$	4.2/7	75.8

- a: pedestal (not fit)
- b: amplitude of flux variation
- t_0 : ~ peak position (not fit)
- c, d: flux-doubling times 9

Constraints on the size of the emitting region

 $R < c \frac{\delta}{1+z} \bullet t_{\rm var}$

M^{Mrk501} ~ 10⁹ M_{sun}

$$R < 0.8\delta \cdot 10^8 \, km \sim 0.6\delta A.U.$$

 $t_{var} \sim 5 \text{ min}$; z = 0.034 c= 3x10⁵ km/s

Which intrinsic engine scale can be used to compare?

Horizon scale is the smallest and the "simplest"

$$R_s = 2GM/c^2 \sim 3 \text{ km } M/M_{sun}$$

Falomo et al, 2002, ApJ, 569, L35

Barth et al, 2003, ApJ, 583, 134

Uncertainties can be large (\sim 5) Rieger & Mannheim, A&A 397, 121 (2003)

Constraints on the size of the emitting region

 $R < c \frac{\delta}{1+z} \bullet t_{\rm var}$

$$R < 0.8\delta \cdot 10^8 \, km \sim 0.6\delta A.U.$$

 $t_{var} \sim 5 \text{ min}$; z = 0.034 c= 3x10⁵ km/s

Which intrinsic engine scale can be used to compare?

Horizon scale is the smallest and the "simplest"

$$R_s = 2GM/c^2 \sim 3 \text{ km } M/M_{sun}$$

Barth et al, 2003, ApJ, 583, 134

 $R^{Mrk501}_{var} < \delta \times 1/33 R_s^{Mrk501}$

 $\delta \sim 50$ to have an emitting region comparable to R_S

Active night: July 9 Flare is seen in all energy ranges

Active night: July 9

Flare is seen in all energy ranges

Time delay of 4 ± 1 minute between highest and lowest energy ranges

First time in VHE !!

Active night: July 9

Flare is seen in all energy ranges

Time delay of 4 ± 1 minute between highest and lowest energy ranges

First time in VHE !!

Photons at different energies were emitted simultaneously

IF

This would have implications on non-conventional physics (see presentation by Sakharov et al)

Active night: July 9

Flare is seen in all energy ranges

Time delay of 4 ± 1 minute between highest and lowest energy ranges

First time in VHE !!

Flux variations are larger at the largest energies

First time in VHE !!

2.3 - Flux variability vs Energy

Quantification following prescription given in *Vaughan et al. 2003*

All the observing nights (low and high state) included

 F_{var}^{Mrk501} increases with energy aslo at X-rays (see Gliozzi et al. 2006)

 $F_{var}^{Mrk501}(VHE) > F_{var}^{Mrk501}(X-rays)$

The highest $F_{var}^{Mrk501}(X-rays)$ is ~0.6 (in 1998). In 1997, year with very high activity, the highest $F_{var}^{Mrk501}(X-rays)$ was ~0.4. Perhaps flux variability is highest when source is in low state

2.4 - Correlation spectral index - gamma flux (E>0.15 TeV)

All 24 nights included Flare nights split into 2 ("pre-flicker" and "flicker")

Constant fit gives Chi2/NDF = 76.6/25 (Prob 4 e-7)

2.5 - Spectra for the 2 nights with the highest VHE activity

Curved spectra is favoured over simple power law

2.6 - Position of spectral peak before and after EBL correction Model used: 'low' EBL from Kneiske et al 2004

EBL correction moves the spectral peak to higher energies

During the nights of low activity, the flare is not seen at E > 100 GeV

Peak location seems to depend on the source luminosity

2.7 - Overall SED during these observations

Very dynamic spectra in VHE: 3 flux levels + 2 active nights = = 5 different spectra

Unluckily, we do not have simultaneous broad band X-rays: big intra-model degeneracy

It is important to organize multiwavelength campaigns

SED fit with one zone SSC model (Tavecchio et al. 2001)

spectrum	$\gamma_{ m min}$	$\gamma_{ m br}$	$\gamma_{ m max}$	n1	n2	B Gauss	${ m K}$ particle/ cm^3	R cm	Doppler factor	
June 30	1	10^{6}	10^{7}	2	3.5	0.52	$2.5 \cdot 10^4$	10^{15}	25	
June $30 (bis)$	1	$5\cdot 10^5$	10^{7}	2	3.5	0.115	$2.5 \cdot 10^4$	10^{15}	50	20
Low flux	1	10^{5}	$5\cdot 10^6$	2	3.2	0.55	$1.6 \cdot 10^4$	10^{15}	25	

CONCLUSIONS

Observations of Mrk 501 with MAGIC allowed us to study flux and spectra variations down to 100 GeV on a night by night basis

1 - Changes in flux and spectra on several timescales: *months, days, and few minutes*

- **2 Intra-day variations with flux-doubling times ~2 minutes** Much shorter than previous Mrk 501 and Mrk 421 observations Tight constraints on the size of the emitting region
- **3 Flux variability increases with energy**
- 4 Time delay of ~4 minutes between flare location at E <0.25 TeV and E > 1.2 TeV
- **5 Spectra hardens with flux**

6 - Detection of the IC peak in the SED for the most active nights New IACTs increased our capability to study blazars (low/high) GLAST will increase it further next year

Good times for gamma-ray astronomy !! David Paneque

backup

Active night: June 30

Flare is NOT seen in all energies

All energies are compatible with a constant flux emission, except for the range 0.25-0.60 TeV, where a constant emission is highly improbable

Results from fit with the idealistic flare function

$$F(t) = a + \frac{b}{2^{-\frac{t-t_0}{c}} + 2^{\frac{t-t_0}{d}}}$$

E > *150 GeV*

a: pedestal (not fit)

b: amplitude of flux variation
t₀: ~ peak position
c, d: flux-doubling times

($\left(\frac{b}{cm^2 \cdot s}\right)$	$c \ (s)$	$d \ (s)$	$\chi^2/NDF^{\rm d}$	P^{e} (%)
Jun30 Jul09	13.2 ± 4.7 20.3 ± 3.3	$\begin{array}{c} 81{\pm}41\\ 95{\pm}24 \end{array}$	$50{\pm}23$ 185 ${\pm}40$	$20.0/15 \\ 4.2/7$	17.3 ^f 75.8

Fit gives rather compatible numbers for these 2 energy ranges

July 9th: Combined fit to all LCs with symmetric flare (c=d); Chi2/NDF =14/12

					<u> </u>
Energy Range (TeV)	$\frac{a^{\mathrm{a}}}{(\frac{10^{-10} \ ph}{cm^2 \cdot s})}$	a (Crab Units)	$\frac{b}{(\frac{10^{-10} \ ph}{cm^2 \cdot s})}$	c (s)	$\begin{array}{c} t_0 - t_0^{LC \ E \ 0.15 - 0.25 TeV} {}_{\rm b} \\ (s) \end{array}$
0.15-0.25	$4.23 {\pm} 0.49$	$2.48 {\pm} 0.28$	$8.6 {\pm} 3.7$	143 ± 92	0 ± 68
0.25 - 0.6	$2.55 {\pm} 0.24$	$2.32 {\pm} 0.09$	$9.3 {\pm} 2.5$	95 ± 28	7 ± 36
0.6 - 1.2	$0.53 {\pm} 0.10$	$1.96{\pm}0.37$	2.7 ± 0.9	146 ± 56	111 ± 91
1.2-10	$0.23 {\pm} 0.06$	1.51 ± 0.39	$4.0 {\pm} 0.9$	103 ± 19	239 ± 40

 $\mathbf{P} = \mathbf{0} \mathbf{3}$

Active night: July 9 Flare is seen in all energy ranges

Combined fit with flare location common for all energy ranges is less probable

Chi2/NDF =25.6/15 (*P* =0.04)

If flare position is the same, then the shape of the flare should change with energy

Paneque

Results from fit with the idealistic flare function

$$F(t) = a + \frac{b}{2^{-\frac{t-t_0}{c}} + 2^{\frac{t-t_0}{d}}}$$

E > *150 GeV*

a: pedestal (not fit)

b: amplitude of flux variation
t₀: ~ peak position
c, d: flux-doubling times

	b	с	d	$\chi^2/NDF^{\rm d}$	$P^{\rm e}$
$(\frac{1}{2})$	$\frac{0^{-10} \ ph}{cm^2 \cdot s})$	(s)	(s)		(%)
Jun30 1	3.2 ± 4.7	81±41	50 ± 23	20.0/15	17.3^{f}
Jul09 2	20.3 ± 3.3	95 ± 24	$185 {\pm} 40$	4.2/7	75.8

July 9th: Combined fit to all LCs with symmetric flare (c=d); Chi2/NDF = 25.6/15Common flare location for all energy rangesP = 0.04

Energy Range (TeV)	$a^{\mathrm{a}} \ (rac{10^{-10} \ ph}{cm^2 \cdot s})$	a (Crab Units)	$b \ ({10^{-10} \ ph \over cm^2 \cdot s})$	$c \ (s)$	$t_0 - t_0^{LC \ E \ 0.15 - 0.25 TeV}$ b (s)
$\begin{array}{c} 0.15 \text{-} 0.25 \\ 0.25 \text{-} 0.6 \\ 0.6 \text{-} 1.2 \\ 1.2 \text{-} 10 \end{array}$	4.23 ± 0.49 2.55 ± 0.24 0.53 ± 0.10 0.23 ± 0.06	2.48 ± 0.28 2.32 ± 0.09 1.96 ± 0.37 1.51 ± 0.39	5.4 ± 2.2 5.7 ± 1.5 2.6 ± 0.8 3.9 ± 1.0	$301{\pm}210$ $162{\pm}63$ $153{\pm}56$ $97{\pm}22$	$\begin{array}{c} 0\pm42 \\ 0\pm42 \\ 0\pm42 \\ 0\pm42 \end{array}$

2.3 historical light curves (@ VHE) from Mrk501

In 2005 campaign, lower flux than in 1997, but larger than in 1998-1999

2.3 historical light curves (@ VHE) from Mrk501

23 days periodicityobserved by HEGRACT 1 data in 1997Kranich 2000(PhD thesis)Osone 2006

(Astropart. Phys. 26), also in RXTE data

In 2005 campaign, lower flux than in 1997, but larger than in 1998-1999

Comparison with Fvar at X-rays (Gliozzi et al. 2006, ApJ, 646)

Collection of X-ray and gamma-ray data over years 1997-2000 and 2004

Comparison with Fvar at X-rays (Gliozzi et al. 2006, ApJ, 646)

In general, F_{var} increases with energy

Highest F_{var} value was not obtained in 2007, when Xray (and gamma) flux was highest

Fractional variability vs energy

2.4 - Overall flux levels Low : Flux (E>150 GeV) < 0.5 Crab 12 days</p> Medium : Flux > 0.5 Crab && Flux < 1.0 Crab 8 days High : Flux > 1.0 Crab (Flare nights excluded) 2 days

Evidence of hardening of spectra with flux level

Agreement with previous evidences (Pian et al 1998, Tavecchio et al. 2001...) which used the VERY BIG flare of 1997

Flux Level ^m	T_{obs} a (h)	${ m ZA^b}\ (deg)$	$S_{comb}{}^{ m c}$ sigma	$F_{>150~GeV}{}^{ m d} \ ({10^{-10}~ph\over cm^2 \cdot s})$	$F_{>150\ GeV}$ (Crab Units)	$rac{{K_0}^{ m e}}{(rac{10^{-10}\ ph}{cm^2\cdot s\cdot 0.3TeV})}$	a^{f}	$\chi^2/NDF^{ m g}$	P^{h} (%)
Low	17.2	9.96-30.1	16.7	$1.24\pm~0.08$	0.39 ± 0.02	$2.31{\pm}0.13$	2.45 ± 0.07	7.8/7	34.6
Medium	11.0	9.95-30.0	22.8	$2.11\pm~0.09$	0.66 ± 0.03	3.57 ± 0.15	2.43 ± 0.05	2.9/7	89.4
High	1.52	9.95 - 22.3	21.7	$4.62{\pm}~0.21$	1.45 ± 0.07	$7.13{\pm}0.32$	2.28 ± 0.05	4.8/7	68.7

2.2- Frequency Correlations: data distributions from LCs

X-rays and optical flux measurment errors are relatively large

From these plots: existence of correlation is not evident.

A correlation analysis is done in the paper: X/γ are linearly correlated (very probable) while both anti-correlation and no-correlation are possible for optical/ γ -rays

Correlation analysis

Gamma/X-rays

Gamma/optical

Correlation analysis

f (r) 3.5 3.0 В 2.5 ľ D 2.0 1.5 1.0 0.5 0.0 ⊾ -1.0 -0.2 -0.4 0.2 0.8 1.0 -0.6 0.0 0.4 -0.8 0.6 r

Spectral index - flux

2.7 Spectra for the flaring nights (pre-flicker and flicker)

Definition of **pre-flicker** and **flicker** in the LC

June 30th ← Highest VHE activity → July 9th

2.7 Spectra for the flaring nights (pre-flicker and flicker)

During **flickering**, the spectra seems a bit harder; yet not significant

Results of the fit with a log-parabola on the active nights

	MJD Start	$T_{obs} \stackrel{ m a}{} (h)$	$S_{comb}{}^{ m c}$ sigma	$F_{>150\ GeV}{}^{ m d} \ ({10^{-10}\ ph\over cm^2\cdot s})$	$F_{>150 \ GeV}$ (Crab Units)	$rac{K_0}{(rac{10^{-10}\ ph}{cm^2\cdot s\cdot 0.3TeV})}$	a	b	χ^2/NDF	P ¹ (%)
Jun30	53551.905 53551.924	$\begin{array}{c} 0.46 \\ 0.63 \end{array}$	$\begin{array}{c} 22.3\\ 24.7\end{array}$	$10.99{\pm}0.48$ $11.15{\pm}0.43$	$3.46{\pm}0.15$ $3.50{\pm}0.14$	$19.8{\pm}1.0$ $17.2{\pm}0.8$	$1.97{\pm}0.08$ $1.87{\pm}0.08$	$0.27{\pm}0.14$ $0.34{\pm}0.13$	8.2/9 13.8/10	$51.2 \\ 18.1$
Jul09	53560.906 53560.923	0.40 0.36	15.2 19.6	$7.64 \pm 0.48 \\ 12.39 \pm 0.60$	$\begin{array}{c} 2.40 \pm 0.15 \\ 3.89 \pm 0.19 \end{array}$	$12.7{\pm}1.1$ $19.3{\pm}1.3$	2.11 ± 0.12 2.00 ± 0.10	$0.57{\pm}0.34$ $0.44{\pm}0.23$	$\frac{6.4}{8}$ $\frac{8.9}{8}$	59.8 35.2

2.8 - Hardness ratio F(1.2 -10TeV)/F(0.25-1.2TeV) vs time

Hardness ratio is a bit higher during the **flickering** for both nights, but not very significant (1-2 sigmas)

Hardness ratio is probably NOT constant during flare July 9th

2.9 - Hardness ratio F(1.2 -10TeV)/F(0.25-1.2TeV) vs Flux

Larger spread in points from flickering (with respect to pre-flickering)

Evolution of points for flare July 9th shows a clear loop pattern rotating counterclockwise; this might indicate similar variability, cooling, acceleration timescales, as pointed out by Kirk&Mastichiadis (1999)

Comparison with Hardness ratio at X-rays (Gliozzi et al. 2006)

When pattern is clear, it is actually rotating clockwise; i.e. *opposite pattern to the gamma-ray flare observed in July 9th* David Paneque

2 - Variability and size of the emitting region In the reference frame:

Let's assume a spherical region of radius R emitting photons isotropically at a time t0 for a infinitessimal time window (DeltaT -> 0) Light pulse (light curve) seen by observer located **10xR** from the center of the sphere

2 - Variability and size of the emitting region In the reference frame:

Let's assume a spherical region of radius R emitting photons isotropically at a time t0 for a infinitessimal time window (DeltaT -> 0) Light pulse (light curve) seen by observer located 10xR from the center of the sphere

