Gamma-ray Observation with the Tibet ASγ Experiment

---- Recent Results and Future Plan ----

Munehiro OHNISHI Institute for Cosmic Ray Research, Univ. of Tokyo

for the Tibet AS_Y Collaboration

TeV Particle Astrophysics 2007, 30 August 2007, Venice, Italy

The Tibet AS_Y Collaboration

M.Amenomori¹, X.J.Bi², D.Chen³, S.W.Cui⁴, Danzengluobu⁵, L.K.Ding², X.H.Ding⁵, C.Fan⁶, C.F.Feng⁶, Zhaoyang Feng², Z.Y.Feng⁷, X.Y.Gao⁸, Q.X.Geng⁸, H.W.Guo⁵, H.H.He², M.He⁶, K.Hibino⁹, N.Hotta¹⁰, Haibing Hu⁵, H.B.Hu², J.Huang¹¹, Q.Huang⁷, H.Y.Jia⁷, F.Kajino¹², K.Kasahara¹³, Y.Katayose³, C.Kato¹⁴, K.Kawata¹¹, Labaciren⁵, G.M.Le¹⁵, A.F.Li⁶, J.Y.Li⁶, Y.-Q.Lou¹⁶, H.Lu², S.L.Lu², X.R.Meng⁵, K.Mizutani^{13,17}, J.Mu⁸, K.Munakata¹⁴, A.Nagai¹⁸, H.Nanjo¹, M.Nishizawa¹⁹, M.Ohnishi¹¹, I.Ohta²⁰, H.Onuma¹⁷, T.Ouchi⁹, S.Ozawa¹¹, J.R.Ren², T.Saito²¹, T.Y.Saito²², M.Sakata¹², T.K.Sako¹¹, M.Shibata³, A.Shiomi^{9,11}, T.Shirai⁹, H.Sugimoto²³, M.Takita¹¹, Y.H.Tan², N.Tateyama⁹, S.Torii¹³, H.Tsuchiya²⁴, S.Udo¹¹, B.Wang⁸, H.Wang², X.Wang¹¹, Y.Wang², Y.G.Wang⁶, H.R.Wu², L.Xue⁶, Y.Yamamoto¹², C.T.Yan¹¹, X.C.Yang⁸, S.Yasue²⁵, Z.H.Ye¹⁵, G.C.Yu⁷, A.F.Yuan⁵, T.Yuda⁹, H.M.Zhang², J.L.Zhang², N.J.Zhang⁶, X.Y.Zhang⁶, Y.Zhang², Yi Zhang², Zhaxisangzhu⁵ and X.X.Zhou⁷

(1) Department of Physics, Hirosaki University, Hirosaki 036-8561, Japan. (2) Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China, (3) Faculty of Engineering, Yokohama National University, Yokohama 240-8501, Japan. (4) Department of Physics, Hebei Normal University, Shijiazhuang 050016, China, (5) Department of Mathematics and Physics, Tibet University, Lhasa 850000, China. (6) Department of Physics, Shandong University, Jinan 250100, China, (7) Institute of Modern Physics, SouthWest Jiaotong University, Chengdu 610031, China. (8) Department of Physics, Yunnan University, Kunming 650091, China. (9) Faculty of Engineering, Kanagawa University, Yokohama 221-8686, Japan, (10) Faculty of Education, Utsunomiya University, Utsunomiya 321-8505, Japan. (11) Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582, Japan. (12) Department of Physics, Konan University, Kobe 658-8501, Japan. (13) Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan. (14) Department of Physics, Shinshu University, Matsumoto 390-8621, Japan. (15) Center of Space Science and Application Research, Chinese Academy of Sciences, Beijing 100080, China. (16) Physics Department and Tsinghua Center for Astrophysics, Tsinghua University, Beijing 100084, China, (17) Department of Physics, Saitama University, Saitama 338-8570, Japan. (18) Advanced Media Network Center, Utsunomiya University, Utsunomiya 321-8585, Japan. (19) National Institute of Informatics, Tokyo 101-8430, Japan. (20) Tochiqi Study Center, University of the Air, Utsunomiya 321-0943, Japan. (21) Tokyo Metropolitan College of Industrial Technology, Tokyo 116-8523, Japan. (22) Max-Planck-Institut für Physik, München D-80805, Deutschland. (23) Shonan Institute of Technology, Fujisawa 251-8511, Japan. (24) RIKEN, Wako 351-0198, Japan. (25) School of General Education, Shinshu University, Matsumoto 390-8621, Japan.

Contents

□ Tibet Air Shower Array

- Yangbajing Cosmic Ray Observatory
- Array Performance

Recent Results

- Crab Nebula
- MGRO J2019+37 (Cygnus Region)
- MGRO J1908+06

□ Future Plan (Tibet AS+MD)

- Simulation
- Sensitivity
- Expected Results
- Cost Estimation
- Test MD

□ Summary

Yangbajing Cosmic Ray Observatory

Yangbajing (羊八井), Tibet, CHINA 90°522E, 30°102N, 4,300 m a.s.l. (606g/cm²)

Tibet Air Shower (AS) Array

Tibet China (90.522°E, 30.102°N) 4300 m a.s.l.

 Number of Scinti. Detectors
Effective Area for AS
Energy region
Angular Resolution (for Gamma 1ry)
Energy Resolution (for Gamma 1ry)
Pointing Error
Absolute Energy Error
F.O.V. 0.5 m² x 789 ~37,000 m² ~TeV - 100 PeV ~0.4° @10 TeV ~0.2° @100 TeV ~70% @10 TeV ~40% @100TeV < 0.01° ~10% ~2 sr

Energy Spectrum of Gamma rays from Crab Nebula

Consistent with other observations using IACT

30th ICRC 2007, Merida, Mexico

Northern Sky Survey & Cygnus Region

MGRO J2019+37 Energy Spectrum

>Milagro flux is $E^2dN/dE=(3.49\pm0.47stat \pm 1.05sys)x10^{-12}TeVcm^{-2}s^{-1}$ from 3x3 square degree bin centered on the location of Hotspot (304.83°,36.83°) at 12TeV, assuming a differential source spectrum of $E^{-2.6}$ (reference : ApJ658:2007).

30th ICRC 2007, Merida, Mexico

MGRO J1908+06

Figure 1. The significance for an event excess as a function of right ascension and declination in a $1^{\circ} \times 1^{\circ}$ region with the position [R.A. = 287.1°, decl. = 5.5° (J2000)] in the center observed between 2000 October and 2001 September. For the each bin, the significance is calculated for the area of the circle with radius 1.4° and the bin center as the central point. The contour lines are drawn with a step of 0.5σ .

Tibet AS: marginal excess ~4.4 σ (pre-trial)

Subsequently Milagro: clear excess (MGRO J1908+06)

J.L. Zhang for the Tibet AS γ Collaboration, 28th ICRC, vol. 4, pp 2405 - 2408 (2003) Amenomori et al., 29th ICRC, vol. 4, pp 93 - 96 (2005) Amenomori et.al, ApJ 633,1005 (2005)

Tibet AS+MD project

7.2m x 7.2m x 1.5m depth Water pool 20" ϕ PMT x 2 (HAMAMATSU R3600) Underground 2.5m (~515g/cm²~19 X_0) Material:

□ Reinforced concrete

- □ White waterproof paint
 - 192 detectors Total 9950 m²

Counting the number of muons accompanying an air shower

Gamma/Hadron separation

Tibet AS+MD Simulation

Air Shower Generation - Corsika Ver.6.204
CR: 0.3TeV-10PeV, Crab Orbit
Chemical components
Interaction model: QGSJET01c
Gamma: 0.3TeV-10PeV, Crab Orbit
E^{-2.6}

Core position:

Throw randomly within 300 m radius

□ Scintillation det. (Tibet AS) - Epics UV8.00 Estimate energy, direction, core position, ...

 Soil + Cherenkov det. (Tibet MD) - GEANT4 8.0 Reflectance at walls 70% Att. length ~40m@400nm (Dependant on wave length)
Quantum Eff. <u>~20%@400nm</u> (Dependant on wave length)

 Accidental muons
300 Hz/m² x 9950 m² x 200 ns
= ~0.6 muons/an air shower (Poisson noise distribution)

Number of muons vs. Shower Size (Simulation)

 $\Sigma\rho$ ~ :Sum of particle density by all scintillation det.

 ∞ air shower size

 $\Sigma N_{\rm PE}$:Sum of photoelectrons by all muon det.

 \propto the number of muons in air shower

Survival Efficiency (Simulation)

Energy ΣN_{PE} cut value BG rejection γ survival Sensitivity

Sensitivity to Point-like Gamma-ray Sources

5σ or 10 ev. sensitivity in 1yr or 50 hours

How many new sources?

Aharonian et al, ApJ, 636, 777 (2006)

FIG. 8.—Distributions of the photon index of the new sources. The mean photon index is 2.32 with an rms of 0.2.

Induces are harder

(If Tibet AS+MD is constructed at southern hemisphere)Most of new HESS sources detectable by Tibet AS+MD

Expectation of the number of SNR-like sources in the Northern Sky

Cost Estimation

Items		Unit Price (USD)	Quantity	Price (USD)
PMT	20"φ PMT	5,000	384	1.9M
Electronics	ADC, TDC, HV, Cable etc.	1,000	384	0.4M
Water Pool	Construction and Waterproof	250/m ²	10,000m ²	2.5M
Water Purification	MF filter			0.2M
Others				+α
Total				5M + α

Test MD

Construction start 1st September 2007 complete end of November 2007

- Feasibility study of construction
- Compare with simulation
- Search for 1000 TeV Gamma rays

Summary

- Performance of Tibet Air Shower Array:
 - Angular Resolution 0.2° @100TeVEnergy Resolution~40% @100TeVSystematic Pointing Error< 0.01^{\circ}</td>Absolute Energy Error~10%
- Crab Nebula: Energy spectrum observed by Tibet AS is consistent with other observations using IACTs.
- MGRO J2019+37: Tibet flux is not inconsistent with Milagro results, if we assume 100% of the excess is caused by gamma rays.
- MGRO J1908+06: Marginal excess was found.
- Tibet AS+MD: 10000 m² Water Cherenkov Muon Detector Sensitivity is 5-20% Crab @ 10-100 TeV.
- Construction of test MD (52 m² x 2) will start 1st September 2007.

Thank you!