

Cosmic Ray Observations around and above the knee

Karl-Heinz Kampert, University of Wuppertal e-mail: kampert@uni-wuppertal.de

- Astrophysical Relevance of Energy Range
- Experimental Data
 - connecting direct and EAS experiments
 - the knee region
 - the second knee and ankle region
- Experiments in the near Future
- Concluding Remarks

SNRs: The galactic CR accelerators ?

HESS Collaboration: Nature 432 (2005) 75; Nature 439 (2006) 695

Morphology of RX J1713.7-3946

Diffuse TeV $\gamma\text{-emission}$ from galactic centre region

Experimental proof ?

- Still no evidence for hadronic accelerators
- TeV γs can (still) be interpreted by Inverse Compton (IC)
- Diffuse γs suggest nearby sources with a hard spectrum
- Why are most SNRs not seen in TeV light ?

Knee by SNRs ?

Knee by diffusion losses ?

TeV Particle Astrophysics 2007, August 2007, Venice

Knee by change of hadronic interaction ?

TeV Particle Astrophysics 2007, August 2007, Venice

Energy Spectra & Composition

Direct Measurements: RUNJOB, JACEE, ATIC...

- proton above 10¹⁵ eV detected !
- p-spectra agree
- He spectra almost a factor of 2 lower in RUNJOB
- slopes are almost parallel: E^{-2.7-2.8}
- all-particle in RUNJOB ~ 40-50% less than in JACEE & SOKOL

Energy & Mass from EAS by KASCADE

CORSIKA Simulations

Data

E-spectra from KASCADE

Unfolding with QGSJet01

GHEISHA 2002 for low energy interactions

E-spectra from KASCADE

Unfolding with SIBYLL 2.1

GHEISHA 2002 for low energy interactions

More CNO & Iron with Sybill based unfolding

E-spectra from KASCADE

Unfolding with EPOS

GHEISHA 2002 for low energy interactions

Very proton dominant, no Iron (too many muons in EPOS at high energies)

Effect of low-energy Model

Unfolding with QGSJet01 GHEISHA 2002 and Fluka for low energy interactions

QGSJet 01, 0°-18°

Minor Effect only

? E/Z or E/A ?

? E/Z or E/A ?

? E/Z or E/A ?

EAS-TOP & MACRO (TeV µs)

EAS-TOP Collaboration; Astrop. Phys., 20 (2004) 641

GAMMA @ Mt. Aragats

Fit to N_{ch}, N_µ, s assuming rigidity effect and power law γ_1 , γ_2

enormous differences between SIBYLL and QGSJET ? problem of detector MC ?

TeV Particle Astrophysics 2007, August 2007, Venice

arXiv:0704.3200

GAMMA @ Mt. Aragats

arXiv:0704.3200

The CR Energy Spectrum

Proton Primaries: direct and EAS data

direct and EAS data are of similar uncertainties in which they agree well

TeV Particle Astrophysics 2007, August 2007, Venice

Proton Primaries vs Acceleration Models

Proton Primaries vs Propagation Models

Helium Primaries: direct and EAS data

Uncertainties are significantly larger than for protons
KASCADE (with QGSJET) may be a little high

Helium Primaries vs Acceleration Models

Helium Primaries vs Propagation Models

Iron Primaries: direct and EAS data

Iron Primaries vs Acceleration Models

Iron Primaries vs Propagation Models

All-Particle Spec. & Composition

2 Is there a 2nd Knee ?

2 Is there a 2nd Knee ?

New & better data to come...

KASCADE-Grande @ FZ-Karlsruhe ~ 0.5 km2 coverage electron & muon counting muon production height

IceTop/IceCube

@ South Pole ~ 1 km2 coverage charged particles at ground 500 GeV muons in ice

32

Karl-Heinz Kampert

KASCADE-Grande LDFs

$$\rho_{ch} = N_{ch} \cdot C(s) \cdot \left(\frac{r}{40\mathrm{m}}\right)^{s-1.5} \left(1 + \frac{r}{40\mathrm{m}}\right)^{s-2.3}$$

KASCADE-Grande N_{ch}-Spectrum

3 The Ankle Region Galactic → Extragalactic ?

3 The Ankle Region Galactic → Extragalactic ?

3 The Ankle Region Galactic → Extragalactic ?

Ankle: composition helps to discriminate models?

TeV Particle Astrophysics 2007, August 2007, Venice

20.5

Xmax distribution

Xmax distribution

Cosmogenic Neutrinos to probe p-dip model ?

Expts under Construction / Proposed

High Elevation Auger Telescopes (HEAT) 30° - 60° elevation

TALE @ Telescope Array prototype up to 72° elevation

Concluding Remarks

- Vast progress on experimental data from knee to GZKregion ! ... still more to come in near future
- Quality of data from EAS arrays suffer from interaction models. ... LHC-forward expts will help here
- Progress also in acceleration & propagation models
 ... but present uncertainties still too large
 ... how to improve, what data is needed ?
- Second knee suggestive but remains to be proven
- Ankle clearly oberved, but origin to be verified by composition studies, ... again very model dependent
- HEAT & TALE will address this question

Knee & Ankle region is now a target of high resolution studies Need to know their origin for a convincing picture of CR origin