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The Composition of the Universe (third quarter 2007)

3% Dark Gaseous Baryons

22% Dark Matter (not yet detected?)
(detailed nature unclear) /
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74% Dark Energy
(really no idea...)
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+ need one or more
scalar fields!?



RELATIVE ABUNDANCE

Fig. 7. Acomparison of the COBE 90 Gtz map (Bennett ot al. 1996) with the W-band WMAP map. The WMAP
map has 30 times finer resolution than the COBE map.
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The spectrum of initial density perturbations P(k)
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Dark Matter or MOND
- does 1t really matter?

Horizon Scales: excess energy density
100 Mpc scales: LSS, clustering
Cluster scales: deep potentials
Galaxy scales: dark haloes
Subgalactic scales: m

Clearly it matters to the rest of physics; the only
strong astrophysical tests are now by default on
small scales
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How to model small scales

z=6.2 z=3.7

Fundamental
resolution

limrt
<= Mixing

80 kpc

Via L _ Di Kuhlen, Madau 2007
TeV Particle Astrophysics |1 la Lactea — Diemand, Kuhlen, Madau 200 Instituto Veneto August 28, 2007




A statistical approach to the non-linear regime

Can't calculate full evolution of non-linear regime without N-body simulations,
but can make statistical estimate of its extent: Press-Schechter theory

=> retain some of the power of linear theory to constrain parameters
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resenting hierarchical non-linear srowth: semi-anal

lterated Press-Schechter calculations give
Mass Accretion Histories and merger statistics
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\v¥ What is the initial linear input?

)

Consider specific example: supersymmetric WIMP

free streaming damps out kinetic decoupling: chemical decoupling:
WIMP fluctuations DM fluctuations stop WIMPS freeze out to a
oscillating and start to grow relic abundance
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Energy scale: ~10 Mev my/20 ~ 5-50 Gev

Basic answer: free streaming suppresses fluctuations below some scale,
but acoustic oscillations also contribute = minimum halo mass M,
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e.g. Loeb & Zaldarriaga (2005):

approximate calculation of transfer function
due to collisional damping

dominates over free streaming in case
considered (100Gev WIMPw . T, = 10Mev)

gives cutoff masg M, = 104 - 10> Mg
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Transfer Function

log,o[2,(k. z=300)]
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Green, Hofmann & Schwarz 2005

Profumo, Sigurdson & Kamionkowski (2006):
Full calculation for a wide range of SUSY and
extra-dimensional (Kaluza-Klein) WIMP candidates

Gives V\i\c =10%-10"2 Mg

So smallest scale dark matter structure
encapsulates DM particle properties (via M.)
and possibly also inflaton properties (via p or z;)
(e.g. Zentner & Bullock 2002, 2003)
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w«»
)}}( The Resulting Non-linear Power: Theoretical Expectations
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From linear power spectrum and subsequent growth history, expect scale invariance over
~20 orders of magnitude in mass

But effect of flattening of variance vs. mass?
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Diemand et al. (2005): first numerical attempt w. small box, stopping at high z

Consider linear power

spectrum with
M. = 10°M,

Start at z=350

Zoom In:

Simulate [3 kpc]? box,
[60 pc]® sub-box and
[0.024 pc]® sub-sub-box
with 6x 107 particles

of mass 1019 M, each

Find 10 M, “first' halo
With M ~ M,

Profile, density as expected from theory
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(Diemand et al. 2005)

Halo profile ~ universal;
Virial density ~ 200 mean,
even concentration ~ ok

Also abundance matches
lower redshift results

following scaling
for more massive substructure,
present-day MWV halo should
contain 10'> mcirohalos, or
500/pc? locally, the nearest being
within ~0.[5pc away

Further implications for direct and
indirect detection :

These objects move through solar
system in ~ 100 years,

once every 10,000 years

Motion on sky ~ | arcmin/yr
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Alternate Merger Tree Approach (w. Abel &Turk):

Basic resolution problem with trees:
Number of branches grows as ~Nlog(N), where N = M/M .

Number of distinct redshift steps grows as N? or faster

So rather than following every branch, choose some preferentially,
e.g. with declining probability at low mass

e.g. branching probability = | forM > M|

= M/MI for M2 > ™M > M|

=0forM<M?2

Get fast trees for MfIM| ~ 103, MI/M2 ~ |08

Use this as input to semi-analytic model of halo mergers and substructure evolution
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Sparsely-sampled Trees:
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Some Results from Small Scales (~ R < R¢,)

| : Final mass versus initial mass

=two orders of magnitude
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Some Results from Smaller Scales (~ R <

Sun)
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Some Results from Smaller Scales (~ R < R¢ )

3: concentration vs. final mass

=> no major trend with mass
=> most systems heavily
stripped
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Some Results from Smaller Scales (~ R < R¢ )

4: concentration vs. mass loss

=> heavily stripped systems have
concentrations close to |
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Some Results from Smaller Scales (~ R < R¢ )

5: mass loss vs. location

=> heavily stripped systems are
only found at small radii

(but need to be careful

about incompleteness of tree)
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Some Results from Smaller Scales (~ R < R¢ )

6: luminosity vs. mass

= large scatter at fixed mass
=> massive systems dominate

however

(N.b. distance o n-!/3
so apparent luminosity o« n?3)

log[luminosity]|
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Some Theoretical Issues
What are the density profiles for haloes and subhaloes, and how are

‘-

theybuiltup? .IV._lllllllllllllllllIlllllll

Dwarl=
Calaxies

N Cluslers
-2 — NFN

¥oore el al

The Universal Density Profile
(Navarro et al. 2004)
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How to explain halo density profiles and concentrations?

Generic patterns in halo mass accretion histories (MAH - coloured lines),
cf. van den Bosch (2002), Wechsler et al. (2002), Yasitsiomi et al. (2004):

M(a) = M(0) exp[-2 za.] or M(a) = M(0) aP exp[-2 z a ]

Rapid Growth:
When M is close to characteristic mass-scale M*(z)

Slow Growth: /<
Once M*(z) has moved beyond M I

Does the MAH determine the density profile?
e.g. concentration recipes of Wechsler et al,,

|
N

log M(a)/M(1)

Zhao et al., Tasitsiomi et al. (solid black lines above)

-4

Taylor 2005
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How to explain halo density profiles and concentrations?

0 L | ! L L L L |
Consider the 'Nusser Model’

(cf. Nusser & Sheth 1999)

Simplest model for halo growth: assume
accreted material stays a given radius
For a given mass M(z) at redshift z,

r,i, = 3M/(4nA p)= f(M,z,cosmology)

log density
A
I

For each step in MAH, compute
f(M, z and cosmology) to get r(z), Ar(z) -6

density profile given by: -
o(r) = AM(2)/(47tr(z)2Ar(z))

-8 PSR | s L T T S T 1 1 I S S T B
0.01 0.1 1

R/Rvir,o
Taylor 2005
Assumes no transfer of energy or angular momentum to older material

Halo profiles depend on cosmology/power spectrum in principle

NET RESULT: Without radial mixing haloes too concentrated by a factor of ~ 2
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Hayashi et al. 2004

Another Major Issue:
substructure survival vs. heating and shocks 0.1 |
numerical results from several studies all 04p
in rough agreement (Hayashi et al. 2003, 05 [ . pes
Kazantzidis et al. 2004, Goerdt et al. 2006) 0 4
profile depends only on total mass-loss; bl
inner slope ~ stable v
inner region simple V__ «M!/3 E ;
08 v
outer region truncated as r*® . o
2 06t
ﬁ - ! ;
w | -
0.2 ."
0l e
‘ 05 O
log my, ./ M,
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Theoretical Issues: The Disruption Criterion

Also not clear when (and if) substructure
becomes completely unbound

Hayashi et al. 2003: bound systems i

that have lost ~0.1% on circular orbits, "
| % on realistic orbits

for circular orbits, criterion: r, < 2 Moos Mass °

but not clear what this should be for
non-circular orbits (toy calculation
suggests they never disrupt)

a7

Time

Hayashi et al. 2004
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Disruption on subsolar scales

e.g. Diemand et al.: First halo has a density of 10-¢ My/(0.01pc)® ~ IMg/pc?

This is ~10 times the local DM density (so microhalo survives halo formation),
but corresponds to a restoring force less than the tidal field of the solar
system within | pc

Thus, encounters with | Mg stars at b < | pc will cause mass loss and/or
disruption

These encounters should be common, since X, ~ 40-50 Mg pc? in the disk

Thus the grainy-ness of the local baryon distribution will shred small subhaloes.
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Bound Fraction

What if a microhalo meets a star?

Angus & Zhao (2006):

ran tree-code N-body simulations with 10° particles
to investigate, by considering the bound fraction of
particles after a single encounter.

0.0kl

Compared with the
impulse approximation
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Looking for local Substructure

(Baltz, JET & Wai 2007) (astro-ph/0610731)

+ Consider supersymmetric neutralinos (~ vanilla CDM WIMP candidate)

+ Most gammas via (non-rel.) quark-antiquark pairs = hadronization =

pions
+ Resulting pion bump at
~ m, /25 ranges from
[-100 GeV depending
on WIMP mass
+ Sharp energy cutoff,
so very different from
e.g. emission from power-
law cosmic-ray proton

spectrum

photon spectrum E2 dN/dE (GeV ennihilation=')
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Baltz, Taylor & Wai 2007 - spectrum from DarkSUSY/Pythia
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Local subhaloes as seen by GLAST

(astro-ph/0610731)

Brightness of local subhaloes depends on angular size (and thus distance) and on
central density (and thus concentration and degree of stripping)

Scaling with mass/distance not trivial

At large masses, brightest sources are
probably those that just fill the beam

Possibly tens or hundreds of sources
detectable by GLAST over

5-year mission?

number of clumps

10 50 100

detection significance o

Baltz, Taylor & Wai 2007
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Source |dentification:

Source Monoenergetic Extended Non-variable | High-latitude No
Quark Spectrum Counterparts
Subhaloes v v v v v
Molecular ® v v v ®
clouds
Pulsars ~ x x ~ 2 4
Plerions 2 4 v v 2 4 2 4
SNR x v v x x
Blazars x 2 2 v 2
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Summary

Small scales are the only place to really test dark matter astrophysically

N-body simulations, the simplest theoretical models of non-linear structure formation,
are still working with limited resolution

Merger tree models promise insights into small-scale CDM substructure, e.g.

¢ Subhaloes are typically stripped, with fairly low concentrations

«» Mass function not exactly M2

¢+ More massive subhaloes may dominate as sources

¢ Gamma-ray spectrum, variability, spatial extent all aid identification

Several important systematic uncertainties, including
net contraction/expansion history of halo contents.
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