Dark matter annihilation from cosmological IMBHs

Shunsaku Horiuchi (Tokyo University)

TeV Particle Astrophysics 2007 29/08/2007

Intro: Dark Matter

Much evidence for its existence, but their true nature is unknown

Fundamental Question: what is dark matter ?

Is it a particle? Extensions of SM predict weakly interacting particles that has the right properties, e.g. the Neutralino

Search for Neutralino as a dark matter candidate Indirect detection: detect signatures of pairannihilation

Photons, etc

DM Annihilation (galactic)

Well studied [Bengtsson et al ('90), Bergstrom & Ullio ('97), etc] Flux of dark matter annihilation products:

$$\phi_{i}(\psi, E) = \frac{\langle \sigma v \rangle}{m_{DM}^{2}} \frac{dN_{i}}{dE} \frac{1}{4\pi} \int_{l.o.s.} ds \,\rho^{2}(r(s, \psi)) \quad \begin{array}{l} i = \text{annihilation} \\ \text{product} \end{array}$$

Dark matter particle properties

For the Neutralino:

mass
O(100) GeV ~ O(100) TeV

ov
< 10⁻²⁶ cm³s⁻¹

dN/dE
continuous + monochromatic

 $\pi^0 \rightarrow 2\gamma$

DM Annihilation (galactic)

Flux of dark matter annihilation products:

$$\phi_{i}(\psi, E) = \frac{\langle \sigma v \rangle}{m_{DM}^{2}} \frac{dN_{i}}{dE} \frac{1}{4\pi} \int_{l.o.s.} ds \rho^{2}(r(s, \psi))$$

DM Annihilation (extragalactic)

The extragalactic γ ray background (EGB) is a diffuse γ ray signal observed by EGRET [*Strong et al* ('04)], its <u>origin</u> is the sum of unresolved γ -ray sources, but still not known well:

E (GeV

Strong et al ('04)

- Blazars? Stecker&Salamon 1996
- Galaxy clusters? Loeb&Waxman, 2000
- GRBs? Casanova et al 2007
- DM annihilation? Bergstrom et al 2001

 10^{2}

DM Annihilation (extragalactic)

Monochromatic γ-rays are distorted by redshift [Ullio et al 2002]

However, assuming universality of haloE (GeV)profiles (e.g. NFW), DM annihilation is a minimal component ofthe extragalactic γ -ray background [Ando 2005].

Small scale structures

Small scale structures (e.g. microhalos) increase the DM annihilation rate. The galactic centre contains less substructures.

Oda&Totani 2006

But also, - spikes - minispikes

Cosmological Minispikes

(Mini) Spikes

Spikes = dense DM structures around BHs [Gondolo&Silk 1999]

Ullio Zhao Kamionkowski 2002

(c.f. if a BH grows inside a given population of stars, the stellar density in the vicinity of the BH is enhanced)

: A

Minispikes = dense DM structures around IMBHs [Bertone Zentner Silk 2005]

 $\rho_i \propto r^{-\gamma}$

IMBH

We consider minispikes around intermediate mass black holes (IMBH, mass 10²⁻⁶ M_{sun}). Do IMBHs exist? It is motivated: observationally: 1. connection with ULXs? 2. high-z quasars theoretically: **1. seed-BHs for SMBHs** 2. naturally predicted in hierarchical structure formation 3. fills the BH mass range

A. Population-III model $M_{BH} = 100 M_{sun}$ Madau & Rees 2001

B. Protogalactic disk model

$$M_{BH} \sim 10^5 M_{sur}$$

Koushiappas et al 2005

(Mini) Spikes [cont.]

For a strong spike to form, one requires the following:
- adiabatic BH growth (i.e. growth time >> DM orbital time)
- the BH grows within the central O(10) pc of the halo centre
the spike then forms from DM within the gravitational influence
of the central BH [Ullio Zhao Kamionkowski 2002].

• In Pop-III model, stars form anywhere within the halo => a weak minispike can form, $\rho_f \propto r^{-3/2}$

• For Protogalactic Disk model, the above conditions are satisfied => a strong minispike can form, with $\rho_r \propto r^{-7/3}$

Number Density

Take into account depletion due to BH-BH mergers [Merritt et al, 2002].

Number of seed-BH pairs follows a power-law of z:

We fit the number density as

Results

Continuous Photons

Predicted γ ray increases by 1-3 orders

Monochromatic Photons Will GLAST be able to detect smoking-gun γ rays?

Parameter Dependency

Advantage using minispikes

Normally, the annihilation rate scales with the annihilation cross section.

However, a small σv works to maintain a sharp minispike, and:

flux $\propto \langle \sigma v \rangle^{2/7} m_{\chi}^{-9/7}$

i.e. a weak dependency on **Neutralino** parameter

Summary

- Neutralino DM annihilates and contributes to the extragalactic γ ray background (EGB). Small scale structures are important for predicting the total flux.
- IMBH minispikes are a possible substructure, and more natural than spikes.
- How much do they increase contributions to the EGB?

Model	BH mass	Minispike strength	Multiplication factor
Max*	10 ⁵	strong, $\propto r^{-7/3}$	10 ³
Conserv.	10 ²	weak, $\propto r^{-3/2}$	10

*monochromatic γ-ray signal can be strong enough for GLAST

IMBHs in our galaxy

Bertone et al. considered g-rays from IMBHs residing in the Milky Way halo [*Bertone et al, PRD* ('05)]

IMBH number density decreases BH-BH mergers destroy minispikes

Parameter β

Shows the peak flux (at $E_{\gamma} \sim 1 \text{GeV}$) as a function of β for the **Protogalactic Disk model.** $m_x = 100 \text{ GeV}$ $\sigma v = 3 \times 10^{-26} \text{ cm}^3 \text{s}^{-1}$ $z_{re} = 10.9$ 10-6 Peak flux 1σ error/ EGRET bars Scenario A Scenario B $10.9^{+2.3}_{-2.7}$ 18 Z_f 10^{2} $M_{\rm bh} [M_{\odot}]$ 10. $M_{v, \operatorname{crit}}(z_f) \ [M_{\odot}]$ 10^{8} 4×10^{6} $n_{\rm bh}(z_f) \, [{\rm Mpc}^{-3}]$ 0.5 1 23 2.5 101 ± 22 $N_{\rm bh}$ ß 1027 ± 84 $n_{\rm bh}(0) \, [{\rm Mpc}^{-3}]$ 12 0.2 0.3

DM Parameters

