Electroweak symmetry breaking induced by dark matter

> Thomas Hambye University of Brussels

In collaboration with Michel Tytgat: arXiv:0707.0633 (hep-ph)

→> What kind of new physics can we expect at 100 GeV - 1 TeV ?

- Origin of electroweak symmetry breaking
- the Dark Matter particle

If
$$\sigma_{annihil.} \sim g^4/m_{DM}^2$$
, $\Omega_{DM} \sim 0.23$
requires $m_{DM} \sim 100 \,\text{GeV}$ (WIMP mechanism)

- Hierarchy problem(s): suggest new low scale physics, SUSY,...

Could these issues be related???

Relation between EWSB and DM?

This talk: these 2 issues could be deeply related

A model where EWSB is due to the existence of DM, a la Coleman-Weinberg

The model

- 2 Higgs doublets: H_1, H_2
- a Z_2 symmetry: all particles even, except H_2 which is odd

 \implies the lightest H_2 component is stable, i.e. a DM candidate

 $\hat{1}$ $\hat{1}$ $\hat{1}$

"Inert Higgs doublet model": H_2 has no vev, no mixing with H_1 and no couplings to SM fermions

Deshpande, Ma 78'; Ma 06'; Barbieri, Hall, Rychkov 06',...

•
$$H_2 = \begin{pmatrix} H^+ \\ \frac{H_0 + iA_0}{\sqrt{2}} \end{pmatrix}$$
 \longrightarrow 4 components: H^{\pm}, H_0, A_0
if H_0 or A_0 is the lightest state: good DM candidate

• Most general scalar potential:

$$V = \mu_1^2 |H_1|^2 + \mu_2^2 |H_2|^2 + \lambda_1 |H_1|^4 + \lambda_2 |H_2|^4$$

$$+\lambda_3|H_1|^2|H_2|^2 + \lambda_4|H_1^{\dagger}H_2|^2 + \frac{\lambda_5}{2}\left[(H_1^{\dagger}H_2)^2 + h.c.\right]$$

Dark Matter: tree level mass spectrum

$$m_{H^+}^2 = \mu_2^2 + \lambda_3 \frac{v^2}{2}$$

$$m_{H_0}^2 = \mu_2^2 + \lambda_L \frac{v^2}{2} \qquad (\lambda_L = \lambda_3 + \lambda_4 + \lambda_5)$$

$$m_{A_0}^2 = \mu_2^2 + \lambda_S \frac{v^2}{2} \qquad (\lambda_S = \lambda_3 + \lambda_4 - \lambda_5)$$

 \longrightarrow To have H_0 or A_0 the lightest: $\lambda_L < \lambda_3$ or $\lambda_S < \lambda_3$

Relic DM density: annihilation processes

If H_0 is the DM:

Two possible DM mass regimes

• Low DM mass regime: $m_{DM} < m_W$ $(DM = H_0 \text{ or } A_0)$

 \checkmark To avoid too fast $DM DM \rightarrow WW, ZZ$ annihilation

 $40 \,\text{GeV} < m_{DM} < 75 \,\text{GeV}$ Detailed analysis: Lopez-Honorez, Nezri, Oliver, Tytgat '06; see also Barbieri, Hall, Rychkov '06; Bergstrom et al '07 In agreement with direct and indirect gamma detection constraints

Two possible DM mass regimes

• High DM mass regime: $m_{DM} > 400 \,\mathrm{GeV}$

Not relevant for EWSB a la Coleman-Weinberg

DM couplings too large

EWSB a la Coleman-Weinberg: tree level potential

No EWSB at tree level

EWSB: one loop diagrams

S. Coleman, E. Weinberg '73

EWSB: effective potential

• Total one loop effective potential:

EWSB: SM contribution

EWSB: Inert Higgs contribution

a scalar contribution: has the right sign

Coleman, Weinberg '73; Gildener, Weinberg '76; Meissner, Nicolai '07; Espinosa, Quiros '07; Foot at al. '07

all we need is the inert Higgs contribution larger than the top one

- to have a maximum we need one quartic coupling to be larger than $\sim 3g_t^2$
- to have $m_H > 114.4 \text{ GeV}$ we need one quartic coupling to be larger than $\sim 6g_t^2$

requires fairly large quartic coupling(s) (still perturbative)

EWSB vs DM constraints

- <u>EWSB</u>: at least one among $\lambda_{3,L,S}$ must be large (i.e. at least one H^+, H_0, A_0 must be heavy, above $\sim 350 \,\mathrm{GeV}$)
- $\underline{\mathsf{DM}}$: $H_0 \operatorname{or} A_0$ must be below the W
- $\Rightarrow Large mass splittings are required inside the inert Higgs$ $\Rightarrow Electroweak precision measurement??$ $\downarrow \downarrow$ T parameter constraint: can be fulfilled easilyif $m_{H^+} m_{H_0}$ or $m_{H^+} m_{A_0}$ not too large

Custodial symmetry

- necessary mass spectrum
- T parameter constraint
- no CP violation (i.e. no phase in λ_5 , otherwise bad for DM)

Either with normal custodial symmetry $(m_{A_0} \sim m_{H^+})$ or with twisted custodial symmetry $(m_{H_0} \sim m_{H^+})$ Gerard, Herquet '07

Examples of sets of parameters

$$\Omega_{DM}h^2 = 0.11$$

λ_1	λ_2	λ_3	λ_4	λ_5	M_h	M_{H_0}	M_{A_0}	$M_{H^{\pm}}$	h_{BR}	W_{BR}
-0.11	0	5.4	-2.8	-2.8	120	12	405	405	100%	0%
-0.11	-2	5.4	-2.7	-2.7	120	43	395	395	100%	0%
-0.11	-3	5.4	-2.6	-2.6	120	72	390	390	94%	6~%
-0.30	0	7.6	-4.1	-4.1	180	12	495	495	100%	0~%
-0.30	-2.5	7.6	-3.8	-3.8	180	64	470	470	100%	0~%
-0.18	-3	-0.003	4.6	-4.7	120	39	500	55	100%	0~%
-0.29	-5	-0.07	5.5	-5.53	150	54	535	63	0%	$100 \ \%$

 \implies possible range of m_{DM} extended: $10 \,\text{GeV} < m_{DM} < 75 \,\text{GeV}$

- EWSB and WIMP DM: similar scales \implies possible link???
- <u>DM could be crucial for EWSB</u>: explicit minimal example where a single additional Higgs doublet with Z₂ parity provides a good DM candidate and allows EWSB a la Coleman-Weinberg
- In this framework the DM mass is proportional to the EW scale
 provides a possible explanation of why DM would be at the
 EW scale as required by the WIMP mechanism

Relic density

log10 [Ω h²] : mh=120 GeV ; l2=10⁻¹ ; Δ MA0= 10 GeV ; Δ MHc= 50 GeV

log10 [Ω h²] : mh=200 GeV ; l2=10⁻¹ ; Δ MA0= 10 GeV ; Δ MHc= 50 GeV

Lopez-Honorez, Nezri, Oliver, Tytgat '06

Direct detection

log10 [$\sigma_{\text{DM-p}}$] : mh=120 GeV ; l2=10⁻¹ ; Δ MA0= 10 GeV ; Δ MHc= 50 GeV

log10 [$\sigma_{\text{DM-p}}$] : mh=200 GeV ; l2=10⁻¹ ; Δ MA0= 10 GeV ; Δ MHc= 50 GeV

Indirect detection

log10 [flux1 γ (cm⁻²s⁻¹)] : mh=120 GeV ; l2=10⁻¹ ; \triangle MA0= 10 GeV ; \triangle MHc= 50 GeV

