HAWC - A Wide-Field Gamma-Ray Telescope

Jordan A. Goodman

Complementarity of TeV Gamma-Ray Detectors

Imaging Air Cherenkov Telescopes

Energy Range .05-50 TeV Area > 10⁴ m² Background Rejection > 99% Angular Resolution 0.05° Energy Resolution ~15% Aperture 0.003 sr Duty Cycle 10%

High Resolution Energy Spectra Precision Study of Known Sources Source Location & Morphology Deep Surveys of Limited Regions of Sky

Energy Range 0.1-100 TeV Area > 10⁴ m² Background Rejection > 95% Angular Resolution 0.3° - 0.7° Energy Resolution ~50% Aperture > 2 sr Duty Cycle > 90%

Unbiased Complete Sky Survey Extended Sources Transient Objects (GRB's) Multi-Wavelength/Messenger Observations

- Water Cherenkov Detector
- 2600m asl
- 898 detectors
 - 450(t)/273(b) in pond
 - 175 water tanks
- 4000 m² / 4.0x10⁴ m²
- 2-20 TeV median energy
- 1700 Hz trigger rate

Background Rejection in Milagro

Hadronic showers contain penetrating component: µ's & hadrons

 Cosmic-ray showers lead to clumpier bottom layer hit distributions

Gamma-ray showers give smooth hit distributions

γ MC

Galactic Plane Survey Summary

>4.5σ post-trials	Object	² Location (I, b)	Counterpart ?	Pre(Post)- Trial Significance	Flux @20 TeV (<mark>x10⁻¹⁵)</mark> (/TeV/cm ² /s)
	Crab	184.5, -5.7		15.0σ (14.3σ)	10.9±1.2 _{stat}
	MGRO J2019+37	75.0, 0.2	PWN G75.2+0.1 GeV J2020+3658	10.4σ (9.3σ)	8.7±1.4 _{stat}
	MGRO J1908+06	40.4, -1.0	GeV J1907+0557 SNR G40.5-0.5	8.3σ (6.9σ)	8.8±2.4 _{stat}
	MGRO J2031+41	80.3, 1.1	GeV J2035+4214	6.6σ (4.9σ)	9.8±2.9 _{stat}
>4.5σ pre-trials	C1 J2044+36	77.5, -3.9	?	5.8σ (3.9σ)	2.8±0.6 _{stat}
	C2 J2031+33	76.1, -1.7	?	5.1σ (2.8σ)	3.4±0.8 _{stat}
	C3 J0634+17	195.7, 4.1	Geminga	5.1σ (2.8σ)	6.5±1.5 _{stat}
	C4 J2226+60	105.8, 2.0	GeV J2227+6106 Boomerang PWN SNR G106.6+2.9	5.0σ (2.7σ)	3.5±1.2 _{stat}

~100,000 trials taken for Galactic Survey

More on 1908+06 - Preliminary

Median energy for this angle and α =-2.0 is 50 TeV Cut on A4> 4 & 9 gives median E of 60 and 90 TeV

The Cygnus Region

Abdo, et al. ICRC 2007

Wang, et al. ICRC 2007

- MGRO J2019+37: 10.9σ
 - Extended source $1.1^{\circ} \pm 0.5^{\circ}$ (top hat dia.)
 - Possible Counterparts
 - GeV J2020+3658, PWN G75.2+0.1
- MGRO J2031+41: 6.9σ (5.0σ post-trials)
 - Possible Counterparts:
 - 3EG J2033+4118, GEV J2035+4214
 - TEV J2032+413 (1/3 of Milagro flux)
 - 3.0° ± 0.9° (top hat dia.)
- C1 J2044+36: 5.5σ pre-trials
 - no counterparts
 - < 2.0°
- C2 J2031+33: 5.3σ pre-trials
 - no counterparts
 - possible extension of MGRO J2019+37
 - possible fluctuation of MGRO J2019 tail & diffuse emission & background
- Tibet ASγ preliminary detections of 3 sources

TeV Galactic Diffuse Emission

Mrk 421: 7 Year Multi-Wavelength Campaign

TeV III Venice August 2007

TeV γ Rays: New Window for the Sky

TeV γ Rays: New Window for the Sky

TeV III Venice August 2007

HAWC: High Altitude Water Cherenkov

- Build detector at extreme altitude
 - Sierra Negra, Mexico 4100m
 - Incorporate new design
 - PMTs in isolated tanks
 - Larger PMT spacing
 - Single PMT layer (4m deep)
- Reuse Milagro PMTs and electronics
- 22,500 m² sensitive area

~\$6M for complete detector ~10-15x sensitivity of Milagro Crab Nebula in 1 day (4 hours) [Milagro 3-4 months] 4x Crab flux in 15 minutes GRBs to z < 0.8 (now 0.4)</p>

From Milagro to HAWC

- Increase Altitude to 4100 m from 2650 m
- Increase Area to 22,000 m² from 4,000 m² (2,200m²)
- Reuse Milagro PMTs and front end electronics upgrade later?
- HAWC ~10x-15x Sensitivity of Milagro:
 - HAWC: Detect Crab in ~ 1 day (5 σ)
 - Milagro: Detects Crab in 3 mo
- Better Sensitivity at Low Energy
 - ~100m² at 100-200 GeV

Tanks vs Pond

- Less expensive
- Build incrementally
 - Develop & debug as we are building
 - Water can be done incrementally as well
- Within 2 yrs it will be more sensitive than Milagro
- Expandable & upgradeable

100 MeV γ thinned 1/200

Muon

Site Location is Sierra Negra, Mexico

- 4100 m above sea level
- Easy Access
 - 2 hr drive from Puebla
 - 4 hr drive from Mexico City
- Existing Infrastructure
 - Few km from the US/Mexico Large Millimeter Telescope
 - Power, Internet, Roads
 - Sierra Negra Scientific Consortium of ~7 projects
- Excellent Mexican Collaborators
 - ~15 Faculty at 7 institutions have submitted proposal to CONACYT for HAWC
 - Experience in HEP, Auger, and astrophysics (including TeV)

TeV III Venice August 2007

Gamma/Hadron Separation

Rejection factor ~ $e^{-<\mu>}$

Gamma-Ray Sensitivity to Crab-like **Point Source**

- **HESS/VERITAS**, MAGIC, Whipple, **CTA** sensitivity in 50 hours, (~0.2
- **GLAST** sensitivity in 1 year (4π sr)
- HAWC, Milagro, sensitivity in 1(5)
- HAWC will do better for hard & diffuse sources

Why are High Energies Important?

- Do spectra continue or break at high energies?
 Hard to accelerate electrons beyond 50-100 TeV
- Photons from hadronic interactions probe the knee region (~10x higher E)
- Need a high energy picture of the Galaxy

Sensitivity vs. Source Size

Large, low surface brightness sources require large fov and large observation time to detect.

$$σ_{EAS}$$
 ~0.5° $σ_{IACT}$ ~0.1°

EAS arrays obtain ~1500 hrs/yr observation for every source.

Large fov (2 sr):

Entire source & background simultaneously observable

Background well characterized

HAWC: Galactic Diffuse Emission

Diffuse model: GALPROP + Milagro (if Milagro >1.5σ above GALPROP use Milagro measurement)

HAWC can map TeV diffuse emission with 2° longitude resolution.

Conclusions

- Milagro technique works:
 - Discovery of diffuse TeV gamma rays from Galactic plane & Cygnus region
 - Discovery of at least 3 new Galactic TeV sources
 - Demonstration of long-term multi-wavelength AGN monitoring
 - Cosmic-ray anisotropy observed
- With HAWC Large improvements are possible
 - 10-15 times the sensitivity of Milagro in near term
 - ~5 σ/√day on the Crab
 - 3% of Crab flux sensitivity over entire hemisphere (after 5 year operation)
 - HAWC will cost ~\$6M and can be built within several years and is expandable and upgradeable
- Scientific goals
 - Highest energies (>5 TeV)
 - Extended sources
 - Galactic diffuse emission
 - Unique TeV transient detector (GRBs and AGN flares)
 - 4x Crab in 15 minutes

Grazie to the organizers for inviting us to Venice

HAWC sensitivity calculation

- Milagro MC is used to calculate HAWC sensitivity increase of 10-15x
- B.O.T.E.C. (back of the envelope calculation) is similar
 - Energy Threshold 3x lower than Milagro (Approx. B gives 6x more particles, but density of PMTs is less)
 - Sensitivity increase depends on spectrum, but is ~2x

- Area for Triggering is 5x larger than Milagro

- Sensitivity increase is ~2x
- Angular resolution improves because of increased lever arm, better core location, …
 - Sensitivity increase is 1.5-2x
- Gamma/hadron rejection improves due to increased probability of detecting muon away from the core - don't reject gammas
 - Sensitivity increase is >1.5x

Jordan Goodman TeV III Venice August 2007

~4

12

HAWC Effective Area v. Energy

TeV III Venice August 2007