

The Cryogenic Dark Matter Search: Status and Prospects

Jeffrey Filippini University of California, Berkeley for the CDMS collaboration

TeV Particle Astrophysics - Venice, Italy - August 30, 2007

Outline

 Workings of the CDMS experiment

 \mathbf{O}

Results of the 2-Tower run

Status of the 5-Tower run

The future: SuperCDMS

Dark Matter and its Detection

Dark matter is out there...

Strong theory motivation for **thermal WIMP**

- Stable, massive, neutral particle
- Relic density => $\sigma_{XX} \sim 0.1 \text{ pb}$ => $M_X \sim 100 \text{ GeV/c}^2$

Dark Matter and its Detection

Dark matter is out there...

Strong theory motivation for **thermal WIMP**

- Stable, massive, neutral particle
- Relic density => $\sigma_{XX} \sim 0.1 \text{ pb}$ => $M_X \sim 100 \text{ GeV/c}^2$

... so it may interact on Earth!

Crossing symmetry, v_{galactic}~10⁻³c, coherent enhancement (spin-independent scattering) => ~10 keV nuclear recoils, <<1/kg-day

Direct Detection of WIMPs

Radioactive and cosmogenic backgrounds demand

- Background reduction
 - cleanliness
 - shielding
 - passive (depth, Pb, poly)active (muon veto)
- Background discrimination
 - multiplicity
 - dE/dx

CDMS in a nutshell: Event by event discrimination of nuclear and electron recoils using ionization and (athermal) phonons with no background subtraction

ZIP Detectors (Z-sensitive Ionization and Phonon)

Phonon side: 4 quadrants
of athermal phonon sensors
=> energy measurement

Charge side: 2 concentric electrodes

ZP Detectors: onization

Zero-energy resolution ~250 eV, => ~1% at high energies

Fiducial volume cut from divided electrode ("**guard ring**")

ZIP Detectors: Phonons

4 readout channels, each 1036 W TESs in parallel
Zero-energy resolution
100 eV in each channel, total ~5% at higher energies (after position correction)

Yield Discrimination

Primary electron recoil rejection >1,000,000:1

Good agreement with Lindhard theory

Near-Surface Events

ZIP Detectors: Z-sensitivity

- Primary risetime (time from 10% - 40% in phonon amplitude for largest pulse)
- Primary delay (time from 20% charge amplitude to 20% phonon amplitude for largest pulse)

Surface event rejection > **IOO:I**

2000 - PA **Primary risetime** 1800 PB PC 1600 PD QI 1400 QO 1200 digitizer bins 1000 800 600H 400H 200 0 **Primary delay** -200400 420 440 460 480 500 520 time / us

ZIP Detectors: Z-sensitivity

Analysis Improvements

More exposure brings greater challenges: maintain signal acceptance with greater background rejection

Surface events Neutrons (TIZ2, 2-T run)

"Standard" timing parameter (risetime+delay)

Analysis Improvements

Neutrons

More exposure brings greater challenges: maintain signal acceptance with greater background rejection

"Standard" timing parameter (risetime+delay) Discrimination parameter from χ^2 tests using three shape parameters

More sophisticated analyses increase separation using vast information in our ZIP traces!

Further work on neural nets, position-tuned cuts, pulse fitting, ...

Soudan Underground Lab

Soudan Underground Lab

Two Tower Results (2005)

Blind analysis: cuts set with WIMP-search NR band masked

- •Data quality cuts
- •Veto-anticoincidence cut
- •Q_{inner} (fiducial volume) cut
- Ionization yield cut
- •Phonon timing cut

74.5 live days (2004) 1.25 kg Ge + 0.6 kg Si

0.4±0.2±0.2 Ge background expected

0.4±0.9±0.5 Si background expected

Two Tower Results (2005)

Blind analysis: cuts set with WIMP-search NR band masked

- •Data quality cuts
- •Veto-anticoincidence cut
- •Q_{inner} (fiducial volume) cut
- Ionization yield cut
- •Phonon timing cut

74.5 live days (2004) 1.25 kg Ge + 0.6 kg Si

0.4±0.2±0.2 Ge background expected

0.4±0.9±0.5 Si background expected

1 Ge event (run with poor detector performance - oops!)**0** Si events

Two Tower Limits

90% CL upper limits assuming standard halo, *spin-indenpent* coupling (*A*² scaling)

90% CL upper limits assuming standard halo, *spin-dependent* coupling to neutrons

Phys. Rev. Lett. **96**, 011302 (2006) astro-ph/0509259

Phys. Rev. D **73**, 011102 (2006) astroph/0509269

Two Tower Limits

90% CL upper limits assuming standard halo, *spin-indenpent* coupling (*A*² scaling)

1 picobarn = 10^{-36} cm² 10-38) 10-39 -40 AMA 1996 DAMA Edelweiss 2003 10⁻⁴² Zeplin-l CDMS (Ge) 2-Towe CDMS (Ge) combined 50 500 10 100 5 WIMP Mass [GeV/c²]

Upper limit of 1.7×10⁻⁴³ cm² (=**170 zeptobarns**!) for a 60 GeV/c² WIMP

Phys. Rev. Lett. **96**, 011302 (2006) astro-ph/0509259

90% CL upper limits assuming standard halo, *spin-dependent* coupling to neutrons

Phys. Rev. D **73**, 011102 (2006) astroph/0509269

Five Tower Runs (2006-7)

30 ZIPs (5 Towers) installed in Soudan icebox: 4.75 kg Ge, 1.1 kg Si

Significant improvements in new detectors:

- Grounded outer grid eliminates low-yield events from detector-detector crosstalk
- Somewhat reduced **surface contamination** (vs.T2)

Five Tower Yield Bands

Run 123 Neutron Calibration

Five Tower Status

CDMS Detector Operation [5-Tower] WIMP search starts : Sat Oct 21 16:25:08 2006 Last update - Wed Aug 15 16:26:43 2007

Three successful data runs so far:
Run 123 (10/21-3/21): 430 kg-d Ge (raw)
Run 124 (4/20-7/16): 224 kg-d Ge (raw)
Run 125 (7/21-date): ongoing ~7x the 2-Tower exposure so far!

Blind analysis of first two runs in progress Results expected this fall!

Five Tower Status

Five Tower Status

WIMPs at a Zeptobarn

Bulk region •Natural weak scale from light SUSY •G-2 favored, FCNC disfavored

Focus point •Natural weak scale from RGE focusing •Decoupled scalars => low FCNCs

Higgs funnel •Broad resonance (M_A ~ 2 M_X) speeds annihilation

Coannihilation Tail

 Near-degeneracy between LSP and NLSP

"Spectral coincidences"

"Zeptobarn-class" direct detection has substantial discovery potential and complementarity with the LHC

WIMPs at a Zeptobarn

Bulk region •Natural weak scale from light SUSY •G-2 favored, FCNC disfavored

Focus point •Natural weak scale from RGE focusing •Decoupled scalars => low FCNCs

Crossing symmetry!

Higgs funnel •Broad resonance (M_A ~ 2 M_X) speeds annihilation

Coannihilation Tail

 Near-degeneracy between LSP and NLSP

"Spectral coincidences"

"Zeptobarn-class" direct detection has substantial discovery potential and complementarity with the LHC

25kg and Beyond: SuperCDMS

(Formerly known as "CryoArray")

25 kg experiment to explore the zeptobarn scale, now funded by NSF/DOE to run first two SuperTowers at Soudan, then move to **SNOLAB**

- 7 SuperTowers of thick Ge ZIPs
- Improved surface handling
- Improved analysis (some already in hand!)
- Improved detector performance

For references, see <u>http://dmtools.berkeley.edu</u> (Gaitskell, Mandic, Filippini)

25kg and Beyond: SuperCDMS

(Formerly known as "CryoArray")

25 kg experiment to explore the zeptobarn scale, now funded by NSF/DOE to run first two SuperTowers at Soudan, then move to **SNOLAB**

- 7 SuperTowers of thick Ge ZIPs
- Improved surface handling
- Improved analysis (some already in hand!)
- Improved detector performance

For references, see <u>http://dmtools.berkeley.edu</u> (Gaitskell, Mandic, Filippini)

SuperCDMS ZIPs

Source on charge side Ambient background ²⁵²Cf neutrons ¹⁰⁹Cd, low yield ¹⁰ ¹⁰

- 2.5x detector mass (7.6 cm x 2.54 cm)
- => better volume/surface, faster manufacture
- Single mask lithography
- => reliable manufacture
- Improved active AI coverage
- => better "antennas"

Cd-109 calibration of "G3D" at UC Berkeley (July 2007)

Farther future: ongoing work on new ZIP designs and kinetic inductance detectors (**KIDs**) for scalable athermal phonon detection (beyond 25 kg)

Conclusions

- CDMS ZIP detectors have maintained zero background operation down to the 10⁻⁴³ cm² (100 zeptobarn) level
- The 5-Tower run of CDMS II is well underway, pushing to 10⁻⁴⁴ cm² (10 zeptobarn)
 => Results expected this fall!
- SuperCDMS has techniques in hand for next generation cryogenic detectors for the zeptobarn scale

The CDMS Collaboration

Brown University M. Attisha, **R. Gaitskell**, J.-P. Thompson

Caltech Z. Ahmed, S. Golwala

Case Western Reserve University D.S. Akerib, C.N. Bailey, D.R. Grant, R. Hennings-Yeomans, M.R. Dragowsky

Fermi National Accelerator Laboratory D.A. Bauer, M.B. Crisler, J. Hall, D. Holmgren, E. Ramberg, J. Yoo

MIT E. Figueroa, S. Hertel, K. McCarthy

NIST K. Irwin

Queens University W. Rau

RWTH-Aachen S. Arrenberg, T. Bruch, L. Baudis, M. Tarka Santa Clara University B.A. Young

Stanford University P.L. Brink, **B. Cabrera**, J. Cooley, W. Ogburn, M. Pyle, S. Yellin

Syracuse University R.W. Schnee

University of California, Berkeley M. Daal, J. Filippini, N. Mirabolfathi, **B. Sadoulet**, D. Seitz, B. Serfass, K. Sundqvist

University of California, Santa Barbara R. Bunker, D. O. Caldwell, R. Mahapatra, **H. Nelson**, J. Sander

University of Colorado at Denver M. E. Huber, B. Hines

University of Florida T. Saab, J. Hoskins

University of Minnesota P. Cushman, L. Duong, M. Fritts, X. Qiu, A. Reisetter

Extra Slides

Background Budget

General

•Reject multiple-scatters

•Reject coincidence with **muon veto shield**

Photons (bulk electron recoils)

- •Pb shielding
- •Yield rejection > 10⁵:1

Neutrons

- •Polyethylene shielding
- •Muon veto
- •=> 0.05/kg-y (Monte Carlo)
- •=> ~0.1 in 1300 kg-d raw

*Betas" (surface electron recoils)
•Low-activity Cu, old air purge, clean handling
•Timing rejection ~ 100:1
•=> Tune cuts for ~0.5 event leakage in given exposure

	I-Tower counts
All events	968,680
Not random trigger	940,619
Phonon thresholds	79,460
Single scatter	20.907
Data quality	19,027
Pile up	17,793
Muon veto	17,622
Ionization threshold	I 4,835
Fiducial volume	7,615
Nuclear recoil band	23
Phonon timing	Ι

Phys. Rev. D 72, 052009 (2005) astro-ph/0507190

Two-Tower "Candidate"

Data selection failure, NOT a WIMP candidate

Two-Tower "Candidate"

Data selection failure, NOT a WIMP candidate

Position Reconstruction

Crucial to correct for position dependencies of athermal phonon signals

Collimated ¹⁰⁹Cd sources (β , 22 keV γ)

CD-AB phonon partition

CD-AB phonon delay $[\mu s]$

50

Data from UC Berkeley calibration of **T2Z5**, née **G31** LTD10: NIM A **520**, 171 (2004)

Position Correction

Correct events by comparisons to neighbors in phonon partition, phonon delay and energy

Event Reconstruction

2048 16-bit samples x 6 traces X 30 detectors + veto = ~1 MB/event

Better Mousetraps

Improved TES tuning

on all detectors

Grounded Q_{outer} grid on T3-5 => fewer outliers

"Fuzz" tags presence of floating metal

Local charge pathologies

Corrected position plot with betas

Slow, low-yield double-scatter events in Ba calibration: charge crosstalk via floating patches of phonon grid

Towers I and 2 only, specialized cut