

First Results from the ARGO-YBJ Experiment

INFN

On behalf of the ARGO-YBJ Collaboration

TeV Particle Astrophysics, TeV 2007 Venice, Italy, August 27-31, 2007

ivan.demitri@le.infn.it

The ARGO-YBJ experiment

High Altitude Cosmic Ray Laboratory @ YangBaJing, Tibet, China Site Altitude: 4,300 m a.s.l., ~ 600 g/cm²

ARGO-YBJ physics goals

Cosmic ray physics:

- ✓ study of the shower space-time structure,
- ✓ p-Air cross section,
- ✓ spectrum and composition ($E_{th} \sim 1 \text{ TeV}$),
- ✓ anti-p / p ratio at TeV energy,

VHE *γ***-Ray Astronomy**:

search for point-like (and diffuse) galactic and extra-galactic sources at few hundreds GeV energy threshold

- Search for GRB's (full GeV / TeV energy range)
- Sun and Heliosphere physics (E_{th} ~ few GeV)

through the ...

Observation of *Extensive Air Showers* produced in the atmosphere by primary γ 's and nuclei

RPC layout & performance

- Bakelite RPC ($5 \cdot 10^{11} \Omega m$)
- Operation in streamer mode
- Ar/Isobuthane/TFE 15/10/75 gas mixture
- Efficiency > 95 % at 7.5kV (10kV at s.l.)
- Time resolution: ~ 1 ns

EAS reconstruction

Event Rate ~ 4 kHz for N_{hit} >20

detailed study on the EAS space/time structure with unique capabilities (see G.Marsella's talk in the CR session)

3-D view of a detected shower

Top view of the same shower

ິຍ 180

160

140

20-

70

X (m)

Since 2006 July, during the detector calibration and debugging in the 130-clusters configuration, the first preliminary physics results have been obtained in different items.

Among them:

- Moon and Sun shadows
- Gamma ray sources
- High energy Gamma Ray Bursts
- p-Air cross section

•

The Moon Shadow

July 2006 to February 2007 data, with ARGO-130 reconstructed core position inside the array >1.16 x 10⁶ events in a window 6°x 6° around the moon >560 hours of Moon observation with zenith angle < 45°</p>

 0.5065 ± 0.09373

2

2

East

North

17 25 / 12

N-S width $\sigma = 0.51^{\circ} \pm 0.09$

 $N_{pad} > 120, <E> = 2$ A peak at <u>11 σ significance</u>. Shifting: West 0.23°, North 0.27 ° with respect to the nominal moon position

The Sun Shadow

July 2006 to October 2006 data, with ARGO-130 ≻208 hours of Sun observation with zenith angle < 50°.

> $N_{pad} > 500, \langle E \rangle = 5 \text{ TeV}$: A peak at <u>6 σ significance</u>

The Crab

July 2006 to March 2007 data, with ARGO-130

- N_{pad} > 200
- > Data selection for a total live time of \approx 50 days
- Crab observation time ≈ 290 hours
- A signal with <u>5 σ significance</u>
- Gamma-hadron discrimination tools not yet used

The Mkn421 Flare in 2006

Collected by M. Tluczykont, M. Shayduk, E. Bernardini 2006

MJD

The Mkn421 Flare

July and August 2006

- N_{pad} > 60
 Mkn421 observation time ≈ 80 hours
- > A signal with 5.5 σ significance
- No significant excess at Npad > 100
- γ-h discrimination tools not yet used

Search for GRBs

Recording the counting rates from each clusters at different time interval, lower the energy threshold down to 1 Gev and allow the observation flaring phoenomena.

For instance:

the possible high energy tail of GRBs from 1GeV to 100GeV

The counts of each cluster are recorded every 0.5 seconds for 4 levels of coincidence: $n \ge 1, 2, 3, 4$

130 independent detectors in coincidence

- Data from December 2004 to April 2007
- 24 of the 47 GRBs detected by satellites in the field of view of ARGO-YBJ have been analyzed

1) Search for an excess in coincidence (T90)

2) Search in an interval of ± 1 hour around the GRB time

No excess has been observed

Search for GRBs

Upper limits in the 1-100m GeV energy range and $\theta \le 45^{\circ}$

GRB	Satel	T90/dur (s)	θ(°)	Redshift z	Γ	Carpet Area (m ²)	n _o	4σ U.L. (erg/cm²)
041228	Swift	62	28.1		1.56	693	-0.34	5.8·10 ⁻⁴
050408	НЕТЕ	15	20.4	1.24	1.98	1820	-1.2	1.1·10 ⁻⁴
050509A	Swift	12	34.0		2.10	1820	0.44	1.8·10 ⁻⁴
050528	Swift	11	37.8		2.30	1820	-0.03	6.2·10 ⁻⁴
050802	Swift	13	22.5	1.71	1.55	1820	0.82	8.5·10 ⁻⁵
051105A	Swift	0.03	28.5		1.33	3379	-1.5	1.3·10 ⁻⁵
051114	Swift	2	32.8		1.22	3379	1.2	2.5·10 ⁻⁵
051227	Swift	8	22.8		1.31	3379	-0.89	2.1.10 ⁻⁵
060105	Swift	55	16.3		1.11	3379	1.3	1.6·10 ⁻⁴
060111A	Swift	13	10.8		1.63	3379	-0.54	3.4·10 ⁻⁵
060115	Swift	142	16.6	3.53	1.76	4505	0.17	1.2·10 ⁻³
060421	Swift	11	39.3		1.53	4505	-0.71	1.9·10 ⁻⁴
060424	Swift	37	6.7		1.72	4505	-0.05	7.6·10 ⁻⁵
060427	Swift	64	32.6		1.87	4505	-0.39	4.1·10 ⁻⁴
060510A	Swift	21	37.4		1.55	4505	2.0	3.4·10 ⁻⁴
060526	Swift	14	31.7	3.21	1.66	4505	0.63	1.5·10 ⁻⁴
060717	Swift	3	7.4		1.72	5632	1.08	1.3·10 ⁻⁵
060801	Swift	0.5	16.8		0.47	5632	0.10	4.8·10 ⁻⁶
060807	Swift	34	12.4		1.57	5632	0.61	7.6·10 ⁻⁵

I.De Mitri: First Results from the ARGO-YBJ Experiment

Solar Physics

Counting rates summed up for 12 clusters. Forbush decrease observed on 19/jan/05.

Inelastic proton-air cross section measurement

Use the shower frequency vs (sec θ -1)

$$I(\theta) = I(0) \cdot e^{-\frac{h_o}{\Lambda}(\sec(\theta) - 1)}$$

for fixed energy and shower age.

However $\Lambda = \mathbf{k} \lambda_{int}$ mainly because of shower fluctuations.

It is determined by simulations and depends on:

- interaction model
- actual set of experimental observables
- energy
-

Then:

$$\sigma_{p-Air}$$
 (mb) = 2.4 10⁴ / λ_{int} (g/cm²)

Warning

Take care of shower fluctuations

• Constrain $X_{DO} = X_{det} - X_0$ or

better $X_{DM} = X_{det} - X_{max}$

• Select deep showers (large X_{max},

i.e. small X_{D0} or X_{DM})

• **Exploit** detector features (space-time pattern) and location (depth).

Inelastic proton-air cross section measurement

In this plot ARGO-YBJ data points have been already corrected for the effect of primaries heavier than protons.

In agreement with a previuos work based on 42 clusters data (ECRS, Lisbon 2006)

Summary and Outlook

Detector setup:

- The ARGO-YBJ detector has been completely installed
- Data taking with 130/154 clusters (the whole central carpet)
- The guard ring (24 clusters) in data taking at the end of 2007
- Lead plate installation during 2008

Results from preliminary data :

- Moon and Sun shadows observed
- Mrk421 flare observed in July-August 2006 at > 5 s.d.
- Crab Nebula observed at > 5 s.d. in \approx 50 days (no γ /h discrimination yet !).
- inelastic p-air cross section measurements at $\sqrt{s} \sim 0.1 \text{TeV}$
- Forbush decrease observed at low energy

Near future:

- Study other point/extended γ-ray sources
- Better limits on GRB and transient low energy flux modulations
- Study the hadronic CR flux (cross section, spectrum, composition,)

Insights

γ/h discrimination

Several approaches based on the space-time topology of the shower front.

One example: Multi Fractal shower image analysis

The position of the shower maximum (and its rms)

GRB fluence upper limits

Energy range 1-100 GeV

p-air cross section analysis: **Data selection**

Event selection based on:

(a) "shower size" on detector, N_{bit} (pad multiplicity)

(b) core reconstructed in a fiducial area ($60 \times 60 \text{ m}^2$)

(c) constraints on Strip density (> $0.2/m^2$ within R_{70})

and shower extension ($R_{70} < 25m$)

N_{bit} is used to get two separated E sub-samples

 $(N_{hit} = 300 \div 1000, N_{hit} > 1000)$

1.1

p-air cross section analysis: Cuts in-dependence on the zenith angle

No significant zenith angle dependence below 30 degrees.

A slight shift might be seen above 40 degrees.

In this analysis we stop at 40 degrees

p-air cross section analysis: The sec(θ) distributions

Exponential dependence in both MC and real data.

Larger contamination of "external" showers in the low energy bin

The contribution of He primaries
has been checked to increase
the cross section values by 7-9%
(depending on the assumed
primary spectra).

Correction for heavier primaries are expected to be negligible.

Nhit <e></e>		<e></e>	k	σ _{CR-Air} (mb)	
300	÷ 1000	3.9 ± 0.1 TeV	1.6 ± 0.3	299 ± 55	
> '	1000	12.7 ± 0.4 TeV	1.2 ± 0.1	306 ± 34	

- Glauber Matthiae theory
- Durand Pi
 - Wibig Sobczynska
- ••

Models agree within few % in our energy range

Angular resolution

Collected by M. Tluczykont, M. Shayduk, E. Bernardini 2006

MJD

The ARGO-YBJ Experiment

A Sino-Italian Scientific Collaboration by Chinese Academy of Science (CAS) Istituto Nazionale di fisica Nucleare (INFN)

INSTITUTIONS

INFN Lecce and Università del Salento, Lecce INFN and Università "Federico II" di Napoli INFN Catania, Univ. and INAF/IASF di Palermo INFN and Università di Pavia INFN and Università "Tor Vergata" di Roma INFN and Università "Roma Tre" di Roma INFN and INAF/IFSI di Torino

IHEP, Beijing Shanding University, Jinan South West Jaotong Univ., Chengdu Tibet University, Lhasa Yunnan University, Kunming Zhengzhou University, Henan

Spokesmen

Prof. B. D'Ettorre Piazzoli

Prof. Cao Zhen

Detector Control System

