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nd, on the way, provide DM as a byproduct wsp, ke Lrop. )

with M~ TeV and is stable, provided

that there is a discrete Symmetry (R-parity, KK-parity, T-parity...),
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On top of the SM, add only one extra multiplet A= ( ’? )

A — ?E(le + M)X if X is a fermion
L = Loy + ‘DMX|2 — MQ‘X|2 if X is a scalar
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X
On top of the SM, add only one extra multiplet A= ( ’? )

A — ?E(le + M)X if X is a fermion
L = Loy + ‘DMX|2 — 2‘X|2 if X is a scalar

gauge interactions the only parameter,
o and will be fixed by {2pn.

and systematically search for the ideal DM candidate...
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The ideal DM candidate is
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these are all possible choices:

n <5 for fermions
n <7 for scalars

to avoid explosion in the running coupling
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The ideal DM candidate is
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Each multiplet contains a neutral component
with a proper assignment of the hypercharge,
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The ideal DM candidate is

The mass M is determined
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The ideal DM candidate is

SU(2)r | U(1)y | spin | M (TeV)
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Non-perturbative corrections
(and other smaller corrections)

induce modifications:
<0-a,nnv> 2 R ? <O-annv> e <O-annv>p—wave
with R ~ O(few) — O(10%)




The ideal DM candidate is

EW loops induce

Y 12 a mass splitting AM
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The ideal DM candidate is

Listall alowed S1 couplings:
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The ideal DM candidate is

Listall alowed S1 couplings:
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No allowed decay!
Automatically

“I/ stable!



The ideal DM candidate is

2 1/2 S ; L 348 _.EL :
T L5 | 25N }HH |
Fl 27 | S |
E | | tH |
12 |8 | | 8 VL eHH* |
o s o) |
: 37y |3 | | | HoH |
ia | i) |
o LS | o4 i )]
Fl 1w f Bl — |
L | 5 [EEE )
] vl | ] —
g | | 906 |(H*H*H*H*)|
2 F | L a F —

1~3
S
N
)
O
et
=
@p)

and

by direct searches!



The ideal DM candidate is

S
4 s Fl il
. S o
; Fl
J Sl
1
o
S |
1
/2F|
: 32 |5 ]
a
, L5 | .
Fla M
s |
5 1 F|
, e
F

342
166

166
540
526
303
347
729
712
166
166
537
534
906
900
166

= o
E%mg

T T
aufigiiss
mtmtw
ShSiE

(LHH*)
HHH
(LHH)
(HHH*H*)
(HH*H*H*)
(H*H*H*H?)

1~J
s
s
DO
S
I

and

-

need Y =0

by direct searches!

Candidates with Y #0
interact as

o~ GeMrY?
> present bounds

e.g. Xenon
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A fermionic SU(2); quintuplet with Y = 0
provides a DM candidate with M = 10 TeV,
which is fully successful:

- neutral o like proton
- automatically stable “ stabilityinSM:
and

not ye discovered by DM searches.

A scalar SU(2);, eptaplet with Y = 0 also does.

(Other candidates can be cured via non-minimalities.)







direct detection

production at colliders

from annihil in galactic halo or center
(line + continuum)

' ‘Mindirec from annihil in galactic halo or center

; from annihil in galactic halo or center

! from annihil in galactic halo or center

‘ from annihil in massive bodies

\ : 5 .
tracing in Cosmic Rays?



one-loop processes

Spin-Independent Spin-Dependent
larger for higher n My 1

My, . A
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Xenon bound (2007)
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(NB: no free parameters => one predicted point per candidate)




MDM can cross the Earth

with chain regeneration (like v,).

Small AM makes

long-livin§g.

0
final X flux

+
final X flux

at U high Energy:
- high production
- X~ lives long
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Energy (eV)

A clear track! DM is no more dark!
But: - production?

requires non-standard acceleration mechanism

- flux®

few events/km=® yr above 1017 eV

- particle ID?
it’s fat and fast, but looks like a light slow muon

dFE 1
L el Iy
dx 4 M




The DM problem requires physics beyond the SM.

we

Introducmg the minimal amount of it,

nd some fully successful DM candidates:

ma.ssive, neutral, automatically stable.

The “best” is the
fermionic SUEaRIRtUplet with Y = 0.

(M =10 TeV)

Its phenomenology is precisely computable:

- Cal

n be found i

N next gen direct detection exp’s,

- too heavy to be produced at LHC,
- could give signals in indirect detection exp’s.

(Other ca:

ndidates have different properties.)






Mahbubani, Senatore 2005

SplitSuSy-like MDM
- Higgsino (a fermion doublet) - arbitrary multiplet, scalar or fermion
-+ gomething else (a singlet) - nothing else (with Y=0)
- stabilization by R-parity - automatically stable
- want unification also - forget unification, it's SM
- unification scale is low, - nothing

need to embed in 5D
o avoid proton decay

Mahbubani, Senatore 2005

Common feature: the focus is on DM, not on SM hierarchy problem.



1) galaxy rotation curves
NGC 6503

2G N M (r
UC(T) — \/ Nrr ( ) f‘i‘ﬁﬁw'm&ﬂg—;ﬁ-ﬂi{
—_ Cimme=—== halo
: L
ve(r) ~ const = pp(r) ~ —

n
Qv 200

10 ~ 20
Radius (kpc)




The

S8 T U NUNI WS S S S— I Fat §

2) clusters of ga,la,XJ; |
- “potation curves” =

- gravitation lensmg
- X-ray gas temperature

- 0.4

“bullet cluster” - NASA
astro-ph/0608247



NGC 6503

1) galaxy rotation curves g

3) CMB+LSS(+SNla:) [l

Boomera ng " I;El 500 |;'|:;'|[] | 500 | -_EI;_'II;'IIZZI 1] 2000 A0 600 I..H.:-:n:'u:'l 1000
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NGC 6503

1) galaxy rotation curves g

2) clusters of galaxies . g .

3) CMB+LSS(+SNIa;)

Boomerang
ACbar DASI
CBI VSA

0.4

Dark energy density (),

SDSS, 2dFRGS

LyA Forest SDSS

M.Tegmark et al., astro-ph/0608632

QM ~ 0.20 = 0.09 - ). 0.4 o

Matter density {1




1) galaxy rotation curves

&) clusters of galaxies

3) CMB+LSS<+SNI&Z) fl -- SR ~ T |
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How would the power spectra be without DM®?
(and no other extra ingredient)
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that just killed MO B

[back]



Farrar, Rosen (006) astro-ph/0610286
“The bullet goes too fast!”

With a surprising twist, the bullet cluster = - a-ii
that just killed MOND repents and reverts - - :" 308

into an advocate of a, 5* force in the DM
sector, that pulled in the merger.

opringel, Farrar (2007) astro-ph/Ov0s825&

“Not too fast for the law.”
In a breath-taking finale,
Newton and hydro
dynamical laws regain
control: the bullet is a
uncommon guy (7%), but
he is not too fast for them.




Farrar, Rosen (2006) astro-ph/0610298
“The bullet goes too fast!”
With a surprising twist, the bullet cluster -~ ' asl . &
that just killed MOND repents and reverts - ::*#08*
into an advocate of a Bt force in the DM - . 7%
sector, that pulled in the merger.

opringel, Farrar (2007) astro-ph/Ov0s825&

“Not too fast for the law.” =<
In a breath-taking finale,
Newton and hydro
dynamical laws regain
control: the bullet is a
uncommon guy (7%), but
he is not too fast for them.

T =2300 Myr Shocks T =2300 Myr

The Max Planck Studios in
Hollywood seize the opportunity
and make a 2.3-billion-years long

blockbuster movie.




Quadratic and quartic terms in A and H :

A (X*TLX) (H*TE H ; L T2X)°
[1] 2] [3] [4]

- do not induce decays (even number of X, and (X) =0)

- [8] and [4] do not give mass terms

- after EWSB, [R] gives a common mass /). v ~ O(< 100 GeV)
to all X, components;

negligible for M = O(TeV) e
: AN )\HU ‘ATX’ TeV
- after EWSB, [1] gives mass splitting Al = = \g - 7.6 GeV—
between X; components; M M
assume My < 0.01 sothat AMi ..o < AM

- [1] (and [2]) gives annihilations x*x — AH
assume |\y| < ¢+, 95 so that these are subdominant

b
o~

(Anyway, scalar MDM is less interesting.)



neutralino mass matrix in MSSM (B — W?° — H) — HJ basis)

M, 0 —MzC3SW  MzSESW
\E 0 Mo MmzcgCyw  —MzSgCw
- —MmzCaSw  MZCRCW 0 — 1
MzSgSw  —MzSgCw — L 0
superpotential

W = —uHiHo + H1h¥ L1iEr; + H1hY OriDr; — Hah¥ QrilUr;
soft SUSYB terms

1 = g =0
Lsoft e (MlBB s M2W W + MgG Ga)

tan 8 = ——



DAMA annual modulation:

Residuals (epd/kg/keV)
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DATA listed top to bottom on plot

DAMA 2000 5§)k kg-days Nal Ann.Mod. 3sigma,w/0 DAMA 1996 limit
ZEPLIN I Preliminary 2002 result

Edelweiss, 32 k -dags Ge 2000+2002+2003 limit

CDMS (Soudan% 2004 Blind 53 raw kg-days Ge

XENONI10 (10 kg) projected sensitivity

Bottino et al. Neutralino Configurations (OmegaWIMP < OmegaCDMmin)
Bottino et al. Neutralino Configurations (OmegaWIMP >= OmegaCDMmin)
CDMSII (Projected) Development ZBG

XENON100 (100 k: )ﬁlrojected sensitivity

Chattopadhyay et. al Theory results - post WMAP

Lahanas and Iganopoulos 2003

Baer et. al 2003

Kim/Nihei/Roszkowski/de Austri 2002 JHEP

Ellis et. al Theory region post-LEP benchmark }g{oints

Masiero, Profumo and Ullio: general Split SUS

Baltz and Gondolo 2003

050501164001
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Time (day)




EGRET excess WMAP “haze’
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Annihilatian channel b
rm, =50 GaV

EBackground
..... — WIMF annikilation
Tatal contribulion

Energy (VI

however:
- source not centered
- variability...

+ CANGAROO (2004)
+ HESS (2004)

45 ;
(Synchrotron rad from ete  from DM annihilations)

The Galactic emission found by Finkbeiner (2004) in the WMAP data in excess of the

expected foreground Galactic ISM signal may be a signature of such dark matter annihilation.



HEAT excess (1994+95 & 2000)

SUSY+bkg. fit ————— = HEAT 2000
SUSY component ——— o HEAT 94+95
bkg. component ———

O\ bke only fit ——— ;a8 Gev however:
=009 -random trajectories in magnetic field
-flux requires too much DM...

re”)
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Lang=28.6

m, =122 GeV
Ei,.-"'{l—EE}=E.EE
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N=0.720, B,=118.7
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[back to DM detection]



“Neutrino Telescopes”

UnderGround U‘ndérWa,ter Underlce

qize:  small” large large/huge
Energy thres: GeV tens GeV 100 GeV
Energy resol: GeV 10 GeV tens GeV

Angleresol: degree few degrees tens degrees
[back to DM detection]



gxgs(n® —1) 3? if X is a fermion
= 382475 P\ 3-5° IRAIROE

—— A - - R Events at LHC

(similarly oua, 044, Odu) b= \/1 =AM /5 [ £ dt =100/fb

: (0.7+2) 10
Large production for small M . 120 = 260
0.2+1.0
2 X LHC to produce heavy candidates. 0.4+ 2.2
11+ 33

A clean signature: e

3.0 =18
0.1 =0.6
2.7 =14
— <1 0
<1
<1

BR, = 97.7%

BR. = 2.05%

BR,, = 0.25%

T~ 44cm/(n® — 1)



Can one have/kCC DM interactions?

(tree levell)

Need to provide AM = M+ — My = 166 MeV

Accelerate nuclei and
use DM ass diffuse target.

not
unreasonable?

number of targets tagsing

number of bullets
“efficiency”




ie. v, o, ,  from MDM annihilations in halo or body.
Signal in : promising at neutrino telescopes

Enhanced cross section in vector bosons due to resummed diagrams
when Non-Relativistic XA are a “bound state”:

8 9 M W A M 2 E B OCSM e. g. Annihilation cross section into WW

om = 0/1 GeV

resonances match VM forn=3
Signal in : promising if enhanced




For instance, predicted signal in rays:
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