Dark Matter Direct Detection using Cryodetectors Gabriel CHARDIN CSNSM/CNRS and Orsay University

Outline

- What are we looking for ?
- Background discrimination is essential
- Main discrimination schemes
 - Ionization-phonon detectors:
 CDMS, EDELWEISS
 - Light-phonon detectors:
 CRESST, ROSEBUD
- Comparison with noble liquid/gas targets
- Conclusions

after Drukier and Stodolsky, PRD 30 (1984) 2295 (and Goodman and Witten (1985)) Direct detection techniques

Some current direct detection experiments

Discrim.	Name	Location	Technique	Target	Status
					•
None	CUORICINO	Gran Sasso	Heat	41 kg TeO2	running
	GENIUS-TF	Gran Sasso	Ionization	42 kg Ge in liq. N ₂	running
	HDMS	Gran Sasso	Ionization	0.2 kg Ge diode	stopped
	IGEX	Canfranc	Ionization	2 kg Ge Diodes	stopped
Sx Solitishing	DAMA	Gran Sasso	Light	100 kg NaI	stopped
	LIBRA	Gran Sasso	Light	250 kg NaI	running
	NaIAD	Boulby mine	Light	65 kg NaI	stopped
	DRIFT	Boulby mine	Low pressure TPC	CS ₂	running
	ZEPLIN-I	Boulby mine	Light	4 kg Liquid Xe	stopped
	XMASS	Kamioka	Light	100 kg Xe	running
Area Area Area Area Area Area Area Area	CDMS-I	Stanford	Heat + Ionization	1 kg Ge + 0.2 kg Si	stopped
	CDMS-II	Soudan mine	Heat + Ionization	5 kg Ge + 1 kg Si	running
	CRESST-II	Gran Sasso	Heat + Light	10 kg CaWO4	starting
	EDELWEISS-I	Modane	Heat + Ionization	1 kg Ge	stopped
	EDELWEISS-II	Modane	Heat + Ionization	10 kg Ge	starting
	XENON-10	Gran Sasso	Ionization + Light	10 kg Xe	starting
	WARP	Gran Sasso	Ionization + Light	3 kg Ar	running
	ZEPLIN-II	Boulby mine	Ionization + Light	10 kg Xe	starting
	PICASSO	SNO	Metastable gel		
	SIMPLE	Rustrel	Metastable gel		
	COUPP	Fermilab	Bubble chamber	Freon-type liquids	prototype

(Some) Wimp direct detection experiments

Experimental challenges

- Background suppression
 - Deep underground sites
 - Radio-purity of components
 - Active/passive shielding
- Large target mass required
- ~ few keV energy threshold
- Stability and reproducibility

- Discriminate recoil populations
 - Photons scatter off electrons
 - WIMPs/neutrons off nuclei (few keV to few tens of keV)
 - radon heavy nuclear recoils, alpha tails...

CDMS II Collaboration

Brown University M. Attisha, R. Gaitskell, J.-P. Thompson

Caltech Z. Ahmed. S. Golwala

Case Western Reserve University D.S. Akerib, C.N. Bailey, D.R. Grant, R. Hennings-Yeomans, M.R. Dragowsky, R.W. Schnee

Fermi National Accelerator Laboratory D.A. Bauer, M.B. Crisler, J.Hall, D. Holmgren, E. Ramberg, J. Yoo.

MIT E. Figueroa

NIST K. Irwin

Queen's University W.Rau

RWTH-Aachen S. Arrenberg, L. Baudis, T. Bruch, M. Tarka Santa Clara University B.A. Young

Stanford University P.L. Brink, B. Cabrera, J. Cooley-Sekula, W. Ogburn, M. Pyle, S. Yellin

University of California, Berkeley M. Daal, J. Filippini, N. Mirabolfathi, B. Sadoulet, D. Seitz, B. Serfass, K. Sundqvist

University of California, Santa Barbara R. Bunker, D. O. Caldwell, R. Mahapatra, H. Nelson, J. Sander University of Colorado at Denver

M. E. Huber

University of Florida T. Saab, J. Storbeck

University of Minnesota P. Cushman, L. Duong, X. Qiu, A. Reisetter

CDMS @ Soudan

CDMS II Background Discrimination

 Ionization Yield (ionization energy per unit recoil energy) depends strongly on type of recoil

 Most background sources (photons, electrons, alphas) produce electron recoils

CDMS II Background Discrimination

 Ionization Yield (ionization energy per unit recoil energy) depends strongly on type of recoil

 Ionization yield alone rejects >99.9% of gammas, >75% of 'betas'

Ionization + Timing: Reject <u>99.9998%</u> of **Gammas**, <u>99.8%</u> of **surface** events

(Ge 1 and 1.5 kg)

October 2003 January 2003: 52.6 kg.day March 2004 August 2004: 96.8 kg.day

96.8 (31.0) kg-days

CDMS expected sensitivity increase

From CDMS-II in Soudan to SuperCDMS in SNOLab

• Talk by J. Fillipini, PS7

EDELWEISS, Modane Underground Lab

1700 m depth in the Fréjus Tunnel (4800 we)
4 μ/m²/day (≈ 2 x 10⁶ less than at the surface)
1500 neutrons (>1 MeV)/m²/day (rock radioactivity)

EDELWEISS I: 1kg (stopped)

3 x 320g detectors, 1 liter experimental volume, cryostat made with low radioactivity materials in the Frejus Underground Laboratory

External shield: 30cm paraffin, 20cm lead and 10cm copper

1st data taking: 4.5 kg.d Fall 2000 GeAl5,GeAl6,Ge8

2nd data taking : <u>8.6 kg.d</u> Spring 2002 GGA1,GeAI9,GeAI10

3rd data taking : <u>19 kg.d</u> Oct.-Mar 2002 GGA3, GSA1, GSA3

4th data taking : <u>30 kg.d</u> April-Nov 2003 GGA3, GSA1, GSA3

Total exposure : <u>62 kg.d fiducial</u>

Archeological lead

Edelweiss: event-by-event discrimination O. Martineau et al., astro-ph/0310657/

EDELWEISS thermal detectors: excellent energy resolution

- Sub-keV energy resolution on phonon channels (300eV FWHM on two detectors)
 ≈1 keV FWHM on charge channels
- Background comprehension down to a few keV e.e.

stable over periods of months

- Ionization @ few V/cm with Al electrodes
- Different charge/heat ratio for nuclear and electron recoils (WIMP and neutron have lower charge than γs, βs)
- Discrimination event-byevent of electron recoils (main background)
 - $E_I/E_R = 0.3$ for nuclear recoils
 - $E_I/E_R = 1$ for electronic recoils

EDELWEISS-I limitations

- Several runs between 2000 and 2003
- Last run = data taking with trigger on heat signal
- Improved efficiency at low energy (50 % at 11 keV)
- Stable behavior over 4 months of the detectors
- Fiducial exposure: 22 kg.d
- 18 nuclear recoil candidates > 15 keV
- Possible backgrounds
 - Residual neutron flux
 - 1 n-n coincidence observed
 - 2 single expected by MC
 - Surface electron recoils
 - Miscollected charge events at low energy
 - Leak of events down to the nuclear recoil band not visible in coincidence events
- Further, studies concerning the possible origins for these backgrounds

Edelweiss-II improvements

♦ Radiopurity

- Dedicated HPGe detectors for systematic checks of all materials
- Clean Room (class 100 around the cryostat, class 10 000 for the full shielding
- Deradonized air -from NEMO3 radon trapfrom 10 Bq/m3 to 0.1 Bq/m3
- Thicker shield : 20 cm Pb shieding

Neutron Shielding

- EDW-I : 30 cm paraffin
- EDW-II : 50 cm PE and better coverage
- μ veto (>98% coverage)
 - Neutron detectors in coincidence with veto under development (Karlsruhe/Dubna)

=>Aimed sensitivity (EDW-I * 100) σ_{w-n} ≈10⁻⁸ pb with 15 to 30 kg 0.002 evt/kg/day (Er>10keV) = neutron coming from not tagged u

= neutron coming from not tagged μ interacting in the rock

Installation 2005-mid 2006

First phase of EDELWEISS-II

23*320g Ge/NTD

- Developed by CEA Saclay and Camberra-Eurisys
- Amorphous Ge and Si sublayer (better charge collection for surface events)

 Optimized NTD size and homogeneous working T (16-18 mK) : keV resolution

 New holder and connectors (Teflon and copper only)

7*400g Ge/NbSi detectors

Developped by CSNSM Orsay
2 NbSi thin films thermometer for active surface events rejection
Still under R&D with 200g detectors in labs

May 20th, 2007 : 28 detectors installed

22 * 320 g NTD 1 * 70 g Ge73 NTD 1 scintillator/phonon det 2 200 g NbSi (600 Angs) 1 400 g NbSi (125 Angs)

Some results from commissioning runs

- Resolution
 - Charge : at around 2 keV, some of order 1 keV, = Edw1)
 - Heat : still limited by noise induced by « cold making » machines (pulse tubes, reliquefier) few keV (<1 keV in Edw1)
- Stability with time
 - Cryo : ok when working, but still pbs with pulse tubes
 - Noise : can be reduced
- Reproducibility between detectors (NTD)
 - Out of 21 NTD : 2/3 are ok = all three detector channels with good resolutions

Calibrations with 133 Ba

Bolometer design.

•200 g or 400 g Ge absorber

•a-Si sub-layer

- •Nb or Al electrodes (guard) Nb 500 μ m interdigitized electrodes (centre)
- •Two a-Nb_xSi_{1-x} thin film sensors (60 nm thick, $x\sim 0.085$)
- Pd heating, Au pad thermal link

NbSi used to collect centre charges and measure heat signal Comb design: increased sensitivity to local heating (surface events)

Same design for the two sides

Sensitivity to high-energy phonons

z - surface identification

¹⁰⁹Cd source facing the top (A) NbSi sensor

Identification of surface events with Ge/NbSi detector (3)

Neutron and gamma calibrations in EDELWEISS-II May-June 2007

Very first physics data taking in EDELWEISS-II May-June 2007, First ≈20 kg x days (fiducial)

Interdigitized charge-phonon detector

- 200 g Ge crystal
- Hydrogenated a-Ge underlayer for improved charge collection
- Annular aluminum electrodes, interconnected by ultrasonic bonding (strip width: 200 μm; pitch: 2 mm)
- 7 measurement channels: 6 charge (7 MHz bandwidth) + heat (Ge NTD)
- Edelweiss I, low radioactivity refrigerator reconditioned for these experiments

Events of incomplete charge collection: carrier trapping at the free surfaces

 \rightarrow Frisch grid (1944) → Coplanar grid detector (P.N. Luke 1995)
 → Cryogenic Ge detector (P. Brink 2005)
 → Interdigit EDW detector (A. Broniatowski 2006)

Mode of operation

* Voltage biases: $V_a = 1V$, $V_b = 2V$, $V_c = -1V$, $V_d = -2V$, $V_g = 0.5V$, $V_h = -0.5V$

LTD12 Paris 2007

Test experiment with a ²⁴¹Am γ source (60 keV photons)

Cuts: $|Q_a| > 2 \text{ keV } \& |Q_b + Q_d| | > 2 \text{ keV } (e.e.) \Rightarrow$ event rejected

Voltage biases: $V_a = -0.25V$, $V_b = 2V$, $V_c = 0.25V$, $V_d = -2V$, $V_g = 0.5V$, $V_h = -0.5V$ Trigger threshold in ionization: 12 keV (e.e.)Baseline energy resolution of the ionization channels: 1 keV (e.e.)Heat channel resolution: 4 keV (FWHM)T = 17 mK

²⁴¹Am γ source + ²⁵²Cf neutron source

- Same cuts & same bias conditions as the last slide

LTD12 Paris 2007

after Drukier and Stodolsky, PRD 30 (1984) 2295 (and Goodman and Witten (1985)) Direct detection techniques

CRESST-II Detector Concept

Simultaneous measurement of **phonons** and **scintillation light** for discrimination of nuclear recoils from radioactive α , β , γ backgrounds.

2004 data with 300g detector in CRESST-I setup

1.5 month run in 2004
 before upgrade of CRESST
 setup

 Excellent linearity and energy resolution in whole energy range

- Perfect discrimination of $\beta \text{+} \gamma$ from $\alpha ^{\prime} \text{s}$
- Good energy resolution
 (ΔE=6 keV @ 2.3 MeV)
 allows identification of
 alpha emitters
- alphas on surface und in volume give same light

Low Energy Event Distributionin CRESST-I setup without neutron shield

2004 data 10.72 kg days

O recoils mostly from neutrons, W recoils mostly from WIMPs ==> good sensitivity despite neutron background

<u>CRESST restart after upgrade</u>

•Cryostat cold since Oct. 2006

•Commissioning run until end of March 2007 to fix issues with SQUID electronics causing disturbances in light channels .

•First physics run with 3 detectors since April 2007. About 60 kg days expected until September (σ ~10⁻⁷ pb assuming no background appears)

Oct. 2006: Mounting detectors

Upgrade for CRESST-II

- •New read out and biasing electronics: 66 SQUIDs for 33 detector modules
- •Wiring for 66 channels
- Detector integration in cold box
- •New DAQ and slow control
- •Neutron shield: 50 cm PE (12 tons)
- •Muon veto: 20 plastic scintillator panels outside Cu/Pb shield and radon box. Analog fiber transmission through Faraday cage

Preliminary Results from CRESST-II Commissionning Run

- •Neutron background disappeared. Installed neutron shield is efficient
- •Recoil background from alpha decays completely disappeared (now 100% scintillating inner surface of detector module)
- •Width of β/γ band still suffers a bit from electronic interference in light detectors.
- •New result presented at TAUP-2007

Towards 10⁻¹⁰ pbarn sensitivity

- Sensitivity depends on experimental threshold, especially at low M_{WIMP}
- Threshold in *recoil* energy: advantage of thermal signal (wrt reduced yields of ionization, scintillation).

$CaWO_4$ or Ge, Ar, Xe ... ?

- Large A favored by $A^2 \mu^2$ dependence
- Nuclear form factors reduce this effect for A>~100
- Combination of small and large A can test $A^2 \mu^2$ dependence
 - Neutron rate ~ $A^{2/3}$

$CaWO_4$ or Ge, Ar, Xe ... ?

- 1 ton Ge slightly more sensitive than 1 ton CaWO₄
- ... but possible comparison of W and Ca+O rates highly interesting
- Best: compare Ge and CaWO₄
- Other scintillators with diff. A (ex: Al₂O₃)?

Moore's sensitivity law?

- Rapid evolution of sensitivity of discriminating experiments (CDMS, EDELWEISS, CRESST, XENON, WARP, ...)
- But goals are still ≈3 orders of magnitude beyond present best performances

The EURECA Collaboration

CRESST, EDELWEISS, ROSEBUD + CERN

United Kingdom Oxford (H Kraus, coordinator) Germany MPI für Physik, Munich Technische Universität München Universität Tübingen Universität Karlsruhe Forschungszentrum Karlsruhe Russia 🚃

DNLP Dubna

France

CEA/DAPNIA Saclay CEA/DRECAM Saclay CNRS/CRTBT Grenoble CNRS/CSNSM Orsay CNRS/IPNL Lyon CNRS/IAS Orsay

Zaragoza

CERN

EURECA in LSM

EURECA: Cryostat Layout and Design

- Easy access to cryostat as well as detector unit
- Number and size of pipes / feedthrough
- Closest package of detectors
- Load lock system or individual cryostats
- Detector exchange without long interruption
- Different detectors types / expansion

7 independent Cryostats with 7 Towers

> 1 Cryostat with 19 Towers

1 Cryostat with 7 Towers

EURECA, SuperCDMS aim

(Partial) conclusions

- Event-by-event discrimination is essential
- Two main techniques to detect WIMPs: cryogenic and noble gas/liquids
- Cryogenic detectors (CDMS, Edelweiss, CRESST, ROSEBUD):
 excellent discrimination properties and energy resolution
- But : challenging scalability...
- Rare gas targets:
 - XENON and WARP progressing rapidly (ArDM already at tonne scale)
 - Readily scalable, zero background/background subtraction strategy?
- Control of the neutron background; identification of heavy surface nuclear recoils essential (see WARP e.g.)
- 2007-2010 : Both SuperCDMS and EURECA are in their Design Study stage, and studying scalability towards tonne scale
- \approx 2010 : decision on experiments with 10⁻¹⁰ pbarn sensitivity