

NEW RESULTS FROM HARP (mainly for atmospheric v)

HARP A fixed-target experiment at the CERN Proton Synchrotron (2000-2002)

Hadron Production Experiment (PS214) Neutrino Factory Atmospheric Neutrino Flux Accelerator Neutrino Beams Hadron Production Models Overview of new results

M. Bonesini

Sezione INFN Milano Bicocca,

Dipartimento di Fisica G. Occhialini

Physics goals of HARP

Systematic study of hadron production: Beam momentum: 3-15 GeV/*c* Target: from hydrogen to lead •Acceptance over full solid angle •Final state particle identification •Input for prediction of neutrino fluxes for the MiniBooNE and K2K experiments

•Pion/Kaon yield for the design of the proton driver of neutrino factories and SPL- based super-beams

•Input for precise calculation of the atmospheric neutrino flux and EAS

•Input for Monte Carlo generators (GEANT4, e.g. for LHC or space applications)

 N_7

08

D₁

H₄

Η,

 H_20

6 cm

18 cm

10, 100

Crvogenic

targets

Water

±3

± 5

± 8

± 12

 ± 15

±3, ±8,

 ± 14.5

+1.5,

+8(10%)

58.43

13.83

9.6

Harp detector layout and data taken .

Barrel spectrometer (TPC) + forward spectrometer (DCs) to cover the full solid angle, complemented by PID detectors

HARP forward Particle identification

$\boldsymbol{\nu}$ factory design

- maximize $\pi^+(\pi^-)$ production yield as a function of:
 - proton energy
 - target material
 - geometry
 - collection efficiency (p_L,p_T)
- but different simulations show large discrepancies for π production distributions, both in shape and normalization. Experimental knowledge is rather poor (large errors: poor acceptance, few materials studied)

 \Rightarrow aim: measure p_T distribution with high precision for high Z targets

v beams flux prediction

• Energy, composition, geometry of a neutrino beam is determined by the development of the hadron interaction and cascade \Rightarrow needs to know π spectra, K/ π ratios

•<u>K2K</u> : AI target, 12.9 GeV/c

Al targets 5%, 50%, 100% λ (all p_{beam}), K2K target replica (12.9 GeV/c)

➔ special program with K2K replica target M.G. Catanesi et al., HARP, Nucl. Phys. B732 (2006)1 M. H. Ahn et al., K2K, Phys. Rev. D74 (2006) 072003.

•<u>MiniBooNE</u>: Be target 8.9 GeV/c M.G. Catanesi et al., HARP, Eur. Phys. J. C52(2007) 29

Be targets: 5%, 50%, 100% λ , MiniBoone target replica

Precise p_T and p_Lspectra for extrapolation to far detectors and comparison between near and far detectors

HARP Be 5% 8.9 GeV/c Results

HARP results (data points), Sanford-Wang parametrization of HARP results (histogram)

Atmospheric v flux

Primary flux (70% p, 20% He, 10% heavier nuclei) is now considered to be known to better than 15% (AMS, Bess p spectra agree at 5% up to 100 GeV, worse for He)

- Most of the uncertainty comes from the lack of data to construct and calibrate a reliable hadron interaction model.
- Model-dependent extrapolations from the limited set of data leads to about 30% uncertainty in atmospheric fluxes
- → cryogenic targets (or at least nearby C target data)

78%	nitrogen
21%	oxygen

Extended Air Showers

Hadron production experiments

Canalysis: use focused negative and positive pions

Use negative and positive beams

Selection of secondary particles (π^+, π^-) in forward
hemisphere using the drift chambers.No of events (pos. beam):1,000kNo of events after cuts:460k (p+C)40k (π^++C)40k (π^++C)No of events (neg. beam):646kNo of events after cuts:350k (π^++C)

p+C @ 12 GeV/c: forward

Model comparison: $p+C \rightarrow \pi^+ + X$

Model comparison: $p+C \rightarrow \pi^-+X$

π⁺+C @ 12 GeV/c (lower statistics)

• syst error ~ 10%

π⁻⁺C @ 12 GeV/c (high statistics)

Syst error ~ 10%

p [GeV/c]

p+C at large angle

• p+C data at large angle: measure p+C production on "full solid angle" in the same experiment • large angle analysis with TPC (other results available for Be, C, Al, Cu, Sn, **Pb**, **Ta**): tracking + PID

Measurements with N₂,O₂ cryogenic targets

Shape looks similar =>may use simpler C target data (solid, not cryogenic target)

Covered phase space region

- New data sets

 (p+C, π⁺+C and π⁻+C, , pO₂, pN₂ at 12 GeV/c)
- Important phase space region covered
- Data available for model tuning and simulations
- Results on N2 and O2 data are preliminary

Planned future measurements/analyses

Summary

- \bullet Results for K2K, MiniBoone conventional ν beams have been published.
- Tantalum results for the Neutrino Factory studies are published (Pb coming).
- Carbon data for atmospheric neutrino fluxes are available (N2, O2 preliminary).
- HARP is giving results useful for conventional v beams study, v factory design, EAS, atmospheric v studies and in addition for general MC tuning (Geant4, FLUKA ...) with full solid angle coverage, good PID identification on targets from H to Pb at low energies (< 15 GeV) with small total errors (syst+stat < 10 %)
- More results coming